材料工程  2019, Vol. 47 Issue (5): 26-33   PDF    
http://dx.doi.org/10.11868/j.issn.1001-4381.2018.001388
0

文章信息

张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦
ZHANG Zhi-bin, YU Xiao-feng, WANG Hai-tao, SHI Xue-ting, FENG Li-bang
金属基超疏水表面的制备及性能研究进展
Research progress in preparation and properties of superhydrophobic surface on metal substrates
材料工程, 2019, 47(5): 26-33
Journal of Materials Engineering, 2019, 47(5): 26-33.
http://dx.doi.org/10.11868/j.issn.1001-4381.2018.001388

文章历史

收稿日期: 2018-11-30
修订日期: 2019-02-12
金属基超疏水表面的制备及性能研究进展
张志斌 , 尉小凤 , 王海涛 , 史雪婷 , 冯利邦     
兰州交通大学 材料科学与工程学院, 兰州 730070
摘要: 本文综述了金属基超疏水材料的研究进展,重点讨论了金属基超疏水表面的主要制备方法,比较了不同制备方法的优缺点。同时,探讨了金属基超疏水表面的各种功能特性,并分析了金属基超疏水表面目前在制备和应用中存在的主要问题。指出金属基超疏水表面未来的重点发展方向是简化制备工艺、降低成本、提高超疏水表面的耐久性和稳定性以及制备具有自修复性能的金属超疏水表面。
关键词: 金属    超疏水    制备    性能   
Research progress in preparation and properties of superhydrophobic surface on metal substrates
ZHANG Zhi-bin, YU Xiao-feng, WANG Hai-tao, SHI Xue-ting, FENG Li-bang    
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Abstract: The research progress of superhydrophobic surface on metal substrates was reviewed. The main preparation methods of metal-based superhydrophobic surface were discussed, and the advantages and disadvantages of different preparation method were compared. At the same time, the functional properties of metal-based superhydrophobic surface were discussed, and the main problems in preparation and application of metal-based superhydrophobic surfaces were analyzed. It was pointed out that the future development direction of metal-based superhydrophobic surface is to simplify the preparation process, reduce costs, improve the durability and stability of superhydrophobic surface, and prepare metal superhydrophobic surface with self-healing properties.
Key words: metal    superhydrophobic    preparation    property   

固体表面与液体(例如水)接触一般分为3种情况,即沾湿、浸润以及铺展[1]。表面浸润性是固体材料的重要表面特性之一,是一种广泛存在于自然界的表界面现象。超疏水表面[2-4]通常指液滴在固体表面的接触角大于150°,滚动角小于10°的表面,此时液体很难浸润固体表面,液滴容易滚动从而带走固体表面的污染物。近年来,超疏水表面由于其不易润湿、自清洁等一系列优点引起越来越多的关注[5-7]。自然界中许多植物和动物的表面具有超疏水特性,如荷叶、蜘蛛丝以及蝉翼等[8],其中最具代表性的就是“荷叶效应”。德国植物学家Barthlott和Neinhuis[8]对植物叶子表面进行研究,发现其表面的微纳米协同结构和低表面能蜡状物对其疏水性起决定性作用。

金属材料由于其高导电性、良好散热性和可加工性以及优良的力学性能而被广泛应用。然而,金属材料在大气、酸雨、含氯介质等腐蚀性环境中容易遭受腐蚀[9],从而导致使用寿命的缩短。表面涂层被认为是保护金属材料免受介质腐蚀的有效方法之一[10-12],超疏水表面由于其不易润湿性可明显提高金属材料的耐腐蚀性能[13-18],同时可赋予金属材料流体减阻[19]、防覆冰[20]、自清洁[18, 21]等特有功能性,因此金属基超疏水表面具有广泛的应用前景。国内外已有一些文献对超疏水表面的相关研究进行了论述[22-25],但主要集中于在任意基材上构建超疏水表面,而以金属作为基底的相关综述则较少。本文以金属材料为研究对象,介绍了金属基超疏水表面的主要制备方法,分析对比了不同制备方法的优缺点。同时对金属基超疏水表面的特殊性能进行了详细探讨,并指出了未来的主要发展方向。

1 金属基超疏水表面的制备方法

目前制备超疏水表面的思路大体上可以分为两类:一类是在低表面能的疏水材料表面上构建微纳米粗糙结构;另一类是用低表面能物质在微纳米粗糙结构上进行修饰处理[26]。金属因其表面能较大,所以一般制备思路是先在基底表面构建微纳米粗糙结构,然后通过修饰低表面能物质达到超疏水状态(如图 1所示),主要制备方法有:刻蚀法、自组装法、阳极氧化法、沉积法、水热法以及喷涂法等。

图 1 金属基底超疏水表面制备的基本原理 Fig. 1 Basic principles of metal-based superhydrophobic surfaces preparation
1.1 刻蚀法

刻蚀法[27-28]是利用化学反应或物理作用在基底表面构建表面粗糙结构的一种常用方法,包括湿刻蚀法和干刻蚀法,湿刻蚀法主要是指化学刻蚀,干刻蚀法主要包括激光刻蚀和等离子体刻蚀。

1.1.1 湿刻蚀法

Feng等[29]通过硫酸刻蚀AZ91镁合金,再经硝酸银修饰并组装十二硫醇后,得到接触角为154°、滚动角为5°的超疏水表面。该研究小组还采用简单环保的沸水处理方法[30]在铝合金表面形成粗糙结构然后经过硬脂酸(STA)修饰,得到了接触角155°、滚动角5°的超疏水表面,该表面具有较好的耐腐蚀性能。Li等[31]通过HCl刻蚀铝合金表面形成粗糙结构,然后在其表面修饰全氟硅烷,得到了接触角(153±0.7)°的超疏水表面,明显降低了铝合金的腐蚀速率。Liu等[32]利用氨溶液刻蚀铜表面产生微纳米协同结构后修饰STA,得到接触角157.6°的超疏水表面。

化学刻蚀法通常采用强酸或者强碱作为刻蚀液,具有成本低廉、反应过程简单等优点,但是表面微纳米粗糙结构不易控制,要获得规则微纳米结构通常需要结合模板,此外强酸强碱易对环境造成污染。

1.1.2 干刻蚀法

李晶等[33]通过激光刻蚀的方法在铝合金表面构筑了槽棱结构的超疏水表面,发现间距200μm的网格结构的接触角更高,达到154.9°。由于激光烧蚀形成的微纳米复合形貌使铝合金表面氧化膜面积大量增加,有效地延缓了腐蚀过程,所以网格状结构的耐蚀性优于槽棱状结构。任杰等[34]在放电电压为500V、放电时间为3min、Na2SO4浓度为9g/L的条件下电解等离子体轰击铁片,使其表面活化,然后室温下经过硬脂酸乙醇溶液修饰得到接触角154°的超疏水表面。

激光刻蚀和等离子体刻蚀克服了化学刻蚀法所存在的弊端,刻蚀过程环保简单,能够得到规则可控的微纳结构,但需要特殊设备,成本较高。

1.2 自组装法

自组装[35-36]是指基本结构单元在基于非共价键的相互作用下自发形成薄膜的方法。利用自组装方法构建微纳粗糙结构之后,通常需要低表面能物质进行化学修饰,最终获得超疏水表面。

Feng等[37]采用过硫酸铵作为氧化剂,通过分子自组装法在铜片表面制备出纳米CuO薄膜,然后经STA修饰得到接触角157.5°、滚动角5°的超疏水表面(如图 2所示),该表面具有良好的耐腐蚀性能。罗晓民研究小组[38]采用自组装法将经十八胺修饰的多壁碳纳米管与有机硅改性的水性聚氨酯相结合,喷涂到铜网得到超疏水超亲油铜网,与水的接触角达到了162°,而与油的接触角低至0°,能够有效分离油水混合物。

图 2 不同步骤处理后铜片表面的扫描电镜图像 (a)清洗;(b)氧化;(c)180℃热处理;(d)STA修饰[37] Fig. 2 SEM micrographs of the copper plate surfaces after different treatment steps (a)cleaned; (b)oxidized; (c)heated at 180℃; (d)STA modification[37]

自组装法技术简便易行,无需特殊装置,具有沉积过程和膜结构分子级控制的优点,但制备过程耗时,且结合力较差,导致超疏水表面稳定性较差。

1.3 阳极氧化法

阳极氧化法[39-41]是利用电化学腐蚀阳极材料,在基底表面形成微纳米粗糙结构的方法,所得到的微纳米协同结构通常需要低表面能物质修饰后达到超疏水状态。

王晨玥等[42]通过阳极氧化法形成网状氧化膜在钛基表面构造微纳米结构,然后氟碳罩光漆修饰该微纳复合粗糙表面后得到了接触角162°、滚动角2.1°的超疏水表面,该表面具有优异的环境耐久性。郑顺丽等[43]采用阳极氧化法和十四酸相结合的方式在铝基底上制备出接触角155.2°、滚动角3.5°的超疏水涂层,腐蚀电流密度降低了两个数量级,表现出优异的耐腐蚀性能,此外还具有良好的力学稳定性。Liu等[44]通过一步阳极氧化法在铝合金表面制备了超疏水表面,该表面的接触角高达(171.9±2)°、滚动角(6.2±1)°,并且具备良好的长效稳定性、优异的耐腐蚀性和自清洁性。

阳极氧化法是金属作为阳极材料在电解液中,由于外加电流的作用,在表面形成氧化膜,氧化膜可提高与有机涂层的结合力。制备过程中外加电流易于控制,但是仅可处理铝等活泼金属,可处理的基底材料有限。

1.4 沉积法

沉积法是指在通过置换反应或阴极还原在基体材料上沉积纳米颗粒等以形成粗糙结构来构建超疏水表面,主要包括化学沉积法[45]和电沉积法[46]。基于不同的材料和沉积条件能够获得不同的表面形貌,诸如纳米针状物、纳米颗粒物等。

1.4.1 化学沉积法

Kang等[47]采用化学沉积法在铝基底表面沉积Ni纳米颗粒形成Ni纳米粒子微阵列,然后在表面自组装氟硅烷,该表面的接触角高达164°,具有良好的自清洁性。程江等[48]利用化学沉积法将铜片置于硝酸银溶液中发生化学置换反应在铜片表面沉积单质银粒子,使得铜表面变得粗糙,然后参照碱辅助氧化法,滴加氢氧化钠和过硫酸铵的混合溶液,在铜表面形成接触角高于150°的超疏水表面。

化学沉积法主要是基底材料和溶液中的金属离子发生置换反应,制备过程简单,反应条件可控,但只能置换活泼性比其弱的金属,所置换金属大多价格昂贵,使得制备成本较高。

1.4.2 电沉积法

Zhang等[49]通过一步电沉积法在铝基底上制备超疏水表面,该表面接触角达到162.1°,具有良好的自清洁性,腐蚀电流密度降低3个数量级,明显提高了铝合金的耐腐蚀性能。Su等[50]采用电沉积法在铜基底表面沉积Ni纳米粒子形成粗糙结构后修饰三乙氧基硅烷得到接触角高达162°,滚动角3°左右的超疏水表面,所制备的超疏水表面具有优异的耐磨性、耐腐蚀性和自清洁能力,且在酸性和碱性环境中都有良好的稳定性。

电沉积法通常在常温常压下进行,克服了化学沉积法的缺点,成本较低,制备过程简单可控,但是存在应力问题,结合力较差,表面易磨损。

1.5 水热法

水热法[51]又称热液法,是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行溶液晶体生长,形成微纳米粗糙结构的方法。

Cao等[52]通过铜和硫发生水热反应在铜表面生成的CuS和Cu2S构筑粗糙结构,然后修饰全氟硅烷,得到了接触角153°,稳定性良好的超疏水表面,提高了铜基底的耐腐蚀性。Li等[53]通过水热法在铝合金表面形成银杏叶状微纳米粗糙结构,然后自组装低表面能物质制备得到超疏水表面,该表面接触角达到了160°,并且在室温和高温环境下都具有良好的稳定性。

水热法所形成的微观尺寸比较均匀,但是制备过程通常需要高温高压条件,设备要求高、技术难度大、存在安全隐患。

1.6 喷涂法

喷涂法是利用特殊的喷涂机将含有改性微纳米级颗粒的悬浮液直接喷涂在金属基底上。这种方法制备的表面既具有疏水的特征,还具有易于制备的优点。

Pan等[54]在钢表面喷涂聚甲基丙烯酸甲酯与疏水性二氧化硅纳米粒子混合物,得到了接触角158°的超疏水表面,具有良好的防覆冰性能和耐蚀性能。Wang等[55]在铝合金基底上先喷涂一层烃类树脂作为胶黏剂,然后喷涂二氯二甲基硅烷改性的疏水性二氧化硅纳米粒子得到了接触角153.5°的超疏水表面,腐蚀电流降低了两个数量级。烃类树脂作为胶黏剂提高了超疏水涂层与基底的结合力,此外表面失去超疏水性能后可以再次喷涂使超疏水性能得到恢复。

喷涂法既简便又经济,它不受基底尺寸、形状及表面性质等因素的限制,可以大面积制备超疏水表面,当表面失去超疏水性时可再次通过简单喷涂疏水剂而进行恢复,但存在涂层与基底结合力较差、表面耐久性较低等问题。

如前所述的各种方法均能够制备得到金属基超疏水表面。然而,各种方法均体现出一定的优点,同时存在部分弊端,具体情况如表 1所示。

表 1 金属基超疏水表面主要制备方法的优缺点 Table 1 Advantages and disadvantages of main preparation methods for metal-based superhydrophobic surfaces
Preparation method Advantage Disadvantage Reference
Chemical etching method Low cost and simple preparation Uncontrollable microstructure size and environmental pollution [29-32]
Laser/plasma etching method Controllable regular micro-nanostructures Requires special equipment and higher cost [33-34]
Self assembly method Simple preparation and controllable thickness of film Small bonding force with the substrate and poor stability [37-38]
Anodic oxidation method Simple and controllable preparation Limited applicable substrates [42-44]
Chemical deposition method Simple reaction process and controllable preparation Expensive deposited particles [47-48]
Electrodeposition method Controllable reaction process Existed stress problems and small bonding force [49-50]
Hydrothermal method Well-distributed size of microstructures Requires high temperature and high pressure [52-53]
Spraying method Without the limitation of the size and shape of substrate Poor durability [54-55]
2 金属基超疏水表面的性能

金属基超疏水表面因其具有难润湿性,可显著改善金属材料的耐腐蚀性能,同时可赋予金属材料自清洁、防覆冰、流体减阻等特殊性能。

2.1 自清洁性能

自清洁性能是因为超疏水表面对水滴有高的接触角和低的滚动角,水滴在表面呈球状且易滚动,同时在滚动过程中带走表面污染物,起到清洁作用。

Li等[56]在AZ31镁合金表面通过电沉积法和修饰低表面能物质得到接触角156.2°的超疏水表面,在该表面撒布Al2O3粉末充当污染物,当水滴落在镁合金表面,水滴迅速滚动并带走表面的粉末,证明该表面具有良好的自清洁性。Feng等[57]将制备得到的超疏水铝合金表面倾斜4°,利用碳粉、粉笔灰和烟灰模拟污染物,水滴滴在空白铝合金表面上时,水滴静止不动,不能带走表面污染物;相比之下,滴在覆盖污染物的超疏水铝合金表面时,水滴呈球状并迅速滚落,带走表面污染物,说明该表面具有良好的自清洁性。

2.2 耐腐蚀性能

耐腐蚀性是衡量金属基底超疏水表面的一个重要指标,超疏水表面不易被润湿,可以有效阻碍腐蚀离子和电子的转移,从而降低腐蚀速率,耐腐蚀性能的提高可以显著延长金属材料的使用寿命。

Li等[56]对超疏水镁合金表面进行耐腐蚀研究,电位动态极化曲线显示,超疏水表面的腐蚀电流密度降低了两个数量级,说明超疏水表面显著提高了镁合金的耐蚀性。Feng等[57]利用沸水处理铝片得到粗糙结构,然后通过硬脂酸修饰得到接触角156.6°、滚动角3°的超疏水铝合金表面,电化学测试发现腐蚀电流密度降低了两个数量级,具有良好的耐蚀性。朱亚利等[58]通过盐酸刻蚀、氨水浸泡和疏水长链接枝,成功构建得到接触角达154°、滚动角为6°的超疏水镁合金表面,电化学极化曲线显示:相对于仅经清洗处理的镁合金试样,超疏水镁合金的腐蚀电位升高了0.12V,而腐蚀电流密度降低了1.5个数量级。

2.3 防覆冰性能

超疏水表面水珠与表面黏附力小,水珠容易滚落,不易结冰成霜,具有较好的潜在应用。超疏水表面接触角高,所以结冰时的热力学势垒大、活化率低,水珠的液核难以生成,导致初始液核的出现变慢,从而延缓结冰时间。

晏忠钠等[59]通过硬脂酸的醇水溶液,一步得到接触角达到156.2°、滚动角小于5°的超疏水铝合金表面,冷冻温度下超疏水铝合金表面水滴结冰时间延迟了8min左右。Feng等[28]对制备的超疏水铝合金表面进行防覆冰性能研究,结果显示:温度降低到-6℃,27.5min后,空白样品表面水滴开始冻结;而超疏水表面即使当时间延长到6h,水滴仍然难以冻结。当温度降低至-8℃,水滴在空白样和超疏水表面都会结冰,但是水滴在超疏水铝合金表面保持透明呈球形,冻结时间延迟了9min左右。

2.4 减阻性能

构建超疏水表面是一种公认的高效减阻技术,未来有望应用于海洋工程领域。相较于其他减阻方式,超疏水表面减阻是在表面制备出低表面能的微结构层实现减阻效果,无附加能量消耗。超疏水表面在水下形成的气膜层,决定了它的水下减阻效果。

Wang等[55]对所得到的铝合金超疏水表面进行流变测试,发现随着转速增加,未处理光滑表面摩擦扭矩从7.7μN·m增大至38.7μN·m,而超疏水表面的摩擦扭矩从4.0μN·m增大至20.3μN·m,超疏水表面最大减阻率为48.7%,表明超疏水表面具有优良的减阻效果。Tuo等[60]采用一步水热法得到接触角高达160°的超疏水铝片,超疏水表面在2~5m/s的速率下减阻率约为20%~30%。Wang等[61]在模型船上制备超疏水涂层,研究了低速和高速下的减阻效果。在1mm/s的低速下,超疏水涂层的减阻率达81%,在0.3m/s的速率下,减阻率约为16%。这表明所制备的超疏水表面在高速转动下表现出显著的减阻作用。

2.5 耐磨性能

耐磨性是衡量超疏水表面稳定性的一个重要指标。耐磨性越好,涂层越不易被破坏,保持超疏水状态的时间就越久。

万闪等[62]在铝合金表面通过FeCl3/HCl刻蚀、高锰酸钾钝化和超声沉积氟硅烷得到一层具有微纳米粗糙结构和低表面能的超疏水转化膜,接触角可达153°,该表面显示出良好的自清洁、抗摩擦、耐酸碱和耐腐蚀能力。2.8kPa压力下,摩擦距离小于270cm时,表面基本维持超疏水性;摩擦距离超过300cm后,疏水性能下降,具有较好的耐摩擦性能。Zhang等[63]将所得到的铜基超疏水表面于250kPa压力下在1000目砂纸上以3cm/s的速率运动1.5cm,经过200次摩擦后表面仍是超疏水状态,证明该表面具有优异的力学稳定性。Wang等[64]在蚀刻后的钢铁表面沉积氧化层修饰氟硅烷得到的超疏水表面,该表面负载1kg下砂纸摩擦2.24m后仍然保持超疏水性。

3 结束语

回顾近年来金属基超疏水表面的发展,人们已经制备出了不同类型的超疏水表面。超疏水表面由于其独特的性能,在航天军工、海洋船舶、交通运输、工程建设等行业都有广泛的应用前景。然而由于生产成本昂贵及规模化生产受限等,日常生活及生产中应用的商业化金属基超疏水产品并不多。其中成本及工艺方面,大多数低表面能修饰剂价格昂贵且含氟硅烷等易造成环境污染并对人体的健康造成潜在威胁;许多构建超疏水表面的方法使用设备昂贵,工艺复杂。技术方面,制备的超疏水金属表面容易受到破坏而失去超疏水性能,并且其稳定性和耐磨性有待提高。因此在修饰剂选择、制备工艺以及超疏水性能稳定化等方面还需要进行深入研究。

由于上述局限,今后金属基超疏水表面的研究方向应主要集中在以下方面:(1)开发可以大范围应用的环保经济实用型修饰剂,达到降低制备成本,尽量不造成环境污染且可大规模应用的目的;(2)开发更简便、更实用的方法以构建金属超疏水表面,克服目前制备方法的缺点,降低制备成本,简化制备过程,缩短制备时间;(3)尽可能地提高超疏水表面的稳定性和耐磨耐久性,达到实际环境中超疏水状态长久稳定耐磨;(4)制备具有自修复性能的金属基底超疏水表面,当超疏水表面性能降低或被破坏后通过简单处理(如加热、光照等方法)能自动恢复或重新生成超疏水表面;(5)开发高效超疏水喷剂,提高喷剂与基底结合力,增加疏水喷剂长效性;(6)拓展金属基底超疏水表面的功能性及应用性能研究,夯实金属超疏水表面在生产生活中的应用基础研究。

参考文献(References)
[1] DRUMMOND C, ISRAELACHVILI J. Surface forces and wett-ability[J]. Journal of Petroleum Science and Engineering, 2002, 33 (1/3): 123–133.
[2] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展, 2003, 22 (12): 1258–1264.
JIANG L. Nanostructured materials with superhydrophobic sur-face-from nature to biomimesis[J]. Chemical Industry and Engin-eering Progress, 2003, 22 (12): 1258–1264. DOI: 10.3321/j.issn:1000-6613.2003.12.002
[3] 高雪峰, 江雷. 天然超疏水生物表面研究的新进展[J]. 物理, 2006, 35 (7): 559–564.
GAO X F, JIANG L. Recent studies of natural superhydrophobic bio-surfaces[J]. Physics, 2006, 35 (7): 559–564. DOI: 10.3321/j.issn:0379-4148.2006.07.008
[4] ZHANG X, SHI F, NIU J, et al. Superhydrophobic surfaces:from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18 (6): 621–633. DOI: 10.1039/B711226B
[5] LIU K S, XI Y, JIANG L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39 (8): 3240–3255. DOI: 10.1039/b917112f
[6] 连峰, 王增勇, 张会臣. 疏水/超疏水船用铝合金表面制备及其耐久性[J]. 材料工程, 2015, 43 (1): 49–53.
LIAN F, WANG Z Y, ZHANG H C. Preparation of hydrophob-ic/superhydrophobic warship aluminium alloy surface and its dur-ability[J]. Journal of Materials Engineering, 2015, 43 (1): 49–53.
[7] 强小虎, 张红霞, 王彦平, 等. 强黏附性超疏水氧化铝的表面结构和黏附机理[J]. 材料工程, 2013 (3): 55–60.
QIANG X H, ZHANG H X, WANG Y P, et al. Structure and adhesive mechanism of superhydrophobic alumina surface with high adhesive force[J]. Journal of Materials Engineering, 2013 (3): 55–60.
[8] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202 (1): 1–8. DOI: 10.1007/s004250050096
[9] 李自力, 杨燕. 金属材料交流腐蚀机理、影响因素及风险评价[J]. 化工学报, 2011, 62 (7): 1790–1799.
LI Z L, YANG Y. Mechanism, influence factors and risk evalu-ation of metal alternating current corrosion[J]. CIESC Journal, 2011, 62 (7): 1790–1799. DOI: 10.3969/j.issn.0438-1157.2011.07.002
[10] CHEN Y H. Corrosion resistance of glass coating on metal surface with thermal deposition method[J]. Journal of the Univ-ersity of Petroleum China, 2003, 27 (5): 81–83.
[11] JIN H Y, LI Z W, WEI S C, et al. Corrosion resistance and dynamic anti-icing of superhydrophobic surface on ASW[J]. Surface Engineering, 2018, 34 (8): 603–610. DOI: 10.1080/02670844.2017.1366098
[12] ZANG D M, ZHU R W, ZHANG W, et al. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials, 2017, 27 (8): 1–7.
[13] GAO X Y, GUO Z G. Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface[J]. Journal of Colloid and Interface Science, 2018, 512 : 239–248. DOI: 10.1016/j.jcis.2017.10.061
[14] JIANG D, ZHOU H, WAN S, et al. Fabrication of superhy-drophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly[J]. Surface and Coatings Technology, 2018, 339 : 155–166. DOI: 10.1016/j.surfcoat.2018.02.001
[15] ISHIZAKI T, MASUDA Y, SAKAMOTO M. Corrosion resist-ance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solu-tion[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27 (8): 4780–4788. DOI: 10.1021/la2002783
[16] WANG N, XIONG D S, DENG Y L, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces, 2015, 7 (11): 6260–6272.
[17] FENG L B, CHE Y H, LIU Y H, et al. One-step immersion method for fabricating superhydrophobic aluminum alloy with excellent corrosion resistance[J]. Surface and Interface Anal-ysis, 2016, 48 (12): 1320–1327. DOI: 10.1002/sia.v48.12
[18] WAN S, CONG Y, JIANG D, et al. Weathering barrier enh-ancement of printed circuit board by fluorinated silica based superhydrophobic coating[J]. Colloids and Surfaces A:Physico-chemical and Engineering Aspects, 2018, 538 : 628–638.
[19] WANG Y, LIU X W, ZHANG H F, et al. Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water[J]. RSC Advances, 2015, 5 (24): 18909–18914. DOI: 10.1039/C5RA00941C
[20] 杨钦, 罗荘竹, 谭生, 等. 超疏水自清洁涂层防结冰技术的研究进展[J]. 中国表面工程, 2016, 29 (4): 10–22.
YANG Q, LUO Z Z, TAN S, et al. Research progress in anti-icing technology of superhydrophobic self-cleaning coating[J]. China Surface Engineering, 2016, 29 (4): 10–22.
[21] 刘新, 赵清含. 超疏水自清洁涂料制备及应用研究[J]. 无线互联科技, 2018 (6): 108–112.
LIU X, ZHAO Q H. Study on the preparation and application of superhydrophobic self-cleaning coating[J]. Wireless Internet Technology, 2018 (6): 108–112. DOI: 10.3969/j.issn.1672-6944.2018.06.050
[22] 张艳平, 董兵海, 王世敏, 等. 耐久性超疏水表面的构建及其研究进展[J]. 功能材料, 2017, 48 (6): 6057–6063.
ZHANG Y P, DONG B H, WANG S M, et al. Construction of durable superhydrophobic surface and its research progress[J]. Journal of Functional Materials, 2017, 48 (6): 6057–6063.
[23] 徐文骥, 宋金龙, 孙晶, 等. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011 (5): 93–98.
XU W J, SONG J L, SUN J, et al. Progress in fabrication and application of superhydrophobic surfaces on metal substrates[J]. Journal of Materials Engineering, 2011 (5): 93–98.
[24] JEEVAHAN J, CHANDRASEKARAN M, JOSEPH G B, et al. Superhydrophobic surfaces:a review on fundamentals, appl-ications and challenges[J]. Journal of Coatings Technology and Research, 2018, 15 (2): 231–250. DOI: 10.1007/s11998-017-0011-x
[25] WEN G, GUO Z G, LIU W M. Biomimetic polymeric superh-ydrophobic surfaces and nanostructures:from fabrication to app-lications[J]. Nanoscale, 2017, 9 (10): 3338–3366. DOI: 10.1039/C7NR00096K
[26] FENG L B, ZHANG H X, WANG Z L, et al. Superhydrop-hobic aluminum alloy surface:fabrication, structure, and corro-sion resistance[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 441 : 319–325. DOI: 10.1016/j.colsurfa.2013.09.014
[27] KIM J H, MIRZAEI A, KIM H W, et al. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching[J]. Applied Surface Science, 2018, 439 : 598–604. DOI: 10.1016/j.apsusc.2017.12.211
[28] FENG L B, YAN Z N, SHI X T, et al. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys[J]. Applied Physics A, 2018, 124 (2): 142–156. DOI: 10.1007/s00339-017-1509-x
[29] FENG L B, ZHU Y L, FAN W B, et al. Fabrication and corr-osion resistance of superhydrophobic magnesium alloy[J]. App-lied Physics A, 2015, 120 (2): 561–570. DOI: 10.1007/s00339-015-9215-z
[30] FENG L B, CHE Y H, LIU Y H, et al. Fabrication of super-hydrophobic aluminium alloy surface with excellent corrosion re-sistance by a facile and environment-friendly method[J]. Applied Surface Science, 2013, 283 : 367–374. DOI: 10.1016/j.apsusc.2013.06.117
[31] LI X W, ZHANG Q X, GUO Z, et al. Low-cost and large-scale fabrication of a superhydrophobic 5052 aluminum alloy surface with enhanced corrosion resistance[J]. RSC Advances, 2015, 5 (38): 29639–29646. DOI: 10.1039/C5RA00324E
[32] LIU W, XU Q J, HAN J, et al. A novel combination approach for the preparation of superhydrophobic surface on copper and the consequent corrosion resistance[J]. Corrosion Science, 2016, 110 : 105–113. DOI: 10.1016/j.corsci.2016.04.015
[33] 李晶, 赵世才, 杜锋, 等. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46 (5): 86–91.
LI J, ZHAO S C, DU F, et al. Fabrication of groove and grid structure surface with superhydrophobicity and corrosion resis-tance by laser[J]. Journal of Materials Engineering, 2018, 46 (5): 86–91.
[34] 任杰, 廖瑞瑞, 杨武, 等. 辉光放电电解等离子体处理制备铁基表面超疏水材料[J]. 应用化学, 2013, 30 (2): 208–213.
REN J, LIAO R R, YANG W, et al. Fabrication of superh-ydrophobic iron-surface by using glow discharge electrolysis plas-ma[J]. Chinese Journal of Applied Chemistry, 2013, 30 (2): 208–213.
[35] GUSTAFSSON L, JANSSON R, HEDHAMMAR M, et al. Structuring of functional spider silk wires, coatings, and sheets by self-assembly on superhydrophobic pillar surfaces[J]. Adva-nced Materials, 2017, 30 (3): 1–8.
[36] PANNEERSELVAM V, MANICKAM ANBU K. Hierarchic-ally ordered self-lubricating superhydrophobic anodized alumi-num surfaces with enhanced corrosion resistance[J]. ACS Appl-ied Materials & Interfaces, 2015, 7 (3): 1516–1526.
[37] FENG L B, ZHAO L B, QIANG X H, et al. Fabrication of superhydrophobic copper surface with excellent corrosion resis-tance[J]. Applied Physics A, 2015, 119 (1): 75–83.
[38] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46 (5): 92–98.
LUO X M, WEI M Y, CAO M. Preparation of superhydro-phobic Cu mesh with corrosion resistance and applications in oil-water separation[J]. Journal of Materials Engineering, 2018, 46 (5): 92–98.
[39] ZHOU X, YU S R, GUAN S W, et al. Fabrication and charact-erization of superhydrophobic TiO2 nanotube coating by a facile anodic oxidation approach[J]. Surface and Coatings Techn-ology, 2018, 354 : 83–91. DOI: 10.1016/j.surfcoat.2018.09.014
[40] HÖHNE S, BLANK C, MENSCH A, et al. Superhydrophobic alumina surfaces based on polymer-stabilized oxide layers[J]. Macromolecular Chemistry and Physics, 2009, 210 (16): 1263–1271. DOI: 10.1002/macp.v210:16
[41] LIU C S, SU F H, LIANG J Z. Facile fabrication of a robust and corrosion resistant superhydrophobic aluminum alloy surface by a novel method[J]. RSC Advances, 2014, 4 (98): 556–564.
[42] 王晨玥, 杨文秀, 张洪敏, 等. 纯钛基体长效超疏水表面的低成本制备[J]. 材料工程, 2015, 43 (11): 13–18.
WANG C Y, YANG W X, ZHANG H M, et al. Preparation of durable superhydrophobic surface on pure titanium substrate via low-cost route[J]. Journal of Materials Engineering, 2015, 43 (11): 13–18. DOI: 10.11868/j.issn.1001-4381.2015.11.003
[43] 郑顺丽, 李澄, 项腾飞, 等. 阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究[J]. 材料工程, 2017, 45 (10): 71–78.
ZHENG S L, LI C, XIANG T F, et al. Fabrication of alumin-um-based superhydrophobic coating by anodization and research on stability and corrosion resistance[J]. Journal of Materials Engineering, 2017, 45 (10): 71–78.
[44] LIU Y, LIU J D, LI S Y, et al. One-step method for fabrication of biomimetic superhydrophobic surface on aluminum alloy[J]. Colloids and Surfaces A:Physicochemical and Engineering Asp-ects, 2015, 466 : 125–131.
[45] PI P H, HOU K, ZHOU C L, et al. Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation[J]. Applied Surface Science, 2017, 396 : 566–573. DOI: 10.1016/j.apsusc.2016.10.198
[46] JIANG S Z, GUO Z N, GYIMAH G K, et al. Preparation of biomimetic superhydrophobic surface by a facile one-step pulse electrodeposition[J]. Procedia CIRP, 2018, 68 : 237–241. DOI: 10.1016/j.procir.2017.12.055
[47] KANG C, LU H F, YUAN S J, et al. Superhydrophilicity/superhydrophobicity of nickel micro-arrays fabricated by electr-oless deposition on an etched porous aluminum template[J]. Chemical Engineering Journal, 2012, 203 (5): 1–8.
[48] 程江, 赵安, 孙逸飞, 等. 铜基高梯度润湿表面的构建与表征[J]. 功能材料, 2015, 46 (8): 8138–8143.
CHENG J, ZHAO A, SUN Y F, et al. Preparation and charac-terization of high wettability gradient surface on copper substrate[J]. Journal of Functional Materials, 2015, 46 (8): 8138–8143. DOI: 10.3969/j.issn.1001-9731.2015.08.030
[49] ZHANG B B, LI Y T, HOU B R. One-step electrodeposition fabrication of a superhydrophobic surface on an aluminum sub-strate with enhanced self-cleaning and anticorrosion properties[J]. RSC Advances, 2015, 5 (121): 100000–100010. DOI: 10.1039/C5RA21525K
[50] SU F H, YAO K. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J]. ACS Applied Materials and Interfaces, 2014, 6 (11): 8762–8770. DOI: 10.1021/am501539b
[51] WAN Y X, CHEN M J, LIU W, et al. The research on prepar-ation of superhydrophobic surfaces of pure copper by hydrother-mal method and its corrosion resistance[J]. Electrochimica Acta, 2018, 270 : 310–318. DOI: 10.1016/j.electacta.2018.03.060
[52] CAO L, WAN Y, WANG Y H, et al. Fabrication and mech-anical durability of a superhydrophobic copper surface with mor-phological development from hydrothermal reaction:fabrication of a superhydrophobic copper surface[J]. Surface and Interface Analysis, 2016, 48 (13): 1418–1422. DOI: 10.1002/sia.v48.13
[53] LI L J, HUANG T, LEI J L, et al. Robust biomimetic-stru-ctural superhydrophobic surface on aluminum alloy[J]. ACS Applied Materials & Interfaces, 2015, 7 (3): 1449–1457.
[54] PAN S, WANG N, XIONG D, et al. Fabrication of superhy-drophobic coating via spraying method and its applications in anti-icing and anti-corrosion[J]. Applied Surface Science, 2016, 389 : 547–553. DOI: 10.1016/j.apsusc.2016.07.138
[55] WANG C Z, TANG F, LI Q, et al. Spray-coated superhydr-ophobic surfaces with wear-resistance, drag-reduction and anti-corrosion properties[J]. Colloids and Surfaces A:Physicoch-emical and Engineering Aspects, 2017, 514 : 236–242.
[56] LI W, KANG Z X. Fabrication of corrosion resistant superhy-drophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J]. Surface and Coatings Techn-ology, 2014, 253 (9): 205–213.
[57] FENG L B, YAN Z N, QIANG X H, et al. Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior[J]. Applied Physics A, 2016, 122 (3): 165–179. DOI: 10.1007/s00339-016-9700-z
[58] 朱亚利, 范伟博, 冯利邦, 等. 超疏水镁合金表面的防黏附和耐腐蚀性能[J]. 材料工程, 2016, 44 (1): 66–70.
ZHU Y L, FAN W B, FENG L B, et al. Anti-adhesion and corrosion resistance of superhydrophobic magnesium alloy surf-ace[J]. Journal of Materials Engineering, 2016, 44 (1): 66–70.
[59] 晏忠钠, 车彦慧, 冯利邦, 等. 超疏水铝合金表面的防覆冰和防黏附行为[J]. 材料工程, 2015, 43 (9): 25–29.
YAN Z N, CHE Y H, FENG L B, et al. Anti-icing and anti-adhesion behavior of superhydrophobic aluminum alloy surface[J]. Journal of Materials Engineering, 2015, 43 (9): 25–29.
[60] TUO Y J, CHEN W P, ZHANG H F, et al. One-step hydro-thermal method to fabricate drag reduction superhydrophobic surface on aluminum foil[J]. Applied Surface Science, 2018, 446 : 230–235. DOI: 10.1016/j.apsusc.2018.01.046
[61] WANG Z P, ZHANG S S, GAO S, et al. A simple, low-cost method to fabricate drag-reducing coatings on a macroscopic mo-del ship[J]. Chemical Research in Chinese Universities, 2018, 34 (4): 616–621. DOI: 10.1007/s40242-018-8032-2
[62] 万闪, 姜丹, 蔡光义, 等. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46 (9): 144–151.
WAN S, JIANG D, CAI G Y, et al. Preparation and properties of superhydrophobic conversion film on aluminium alloy[J]. Journal of Materials Engineering, 2018, 46 (9): 144–151.
[63] ZHANG Z Z, GE B, MEN X H, et al. Mechanically durable, superhydrophobic coatings prepared by dual-layer method for anti-corrosion and self-cleaning[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 490 : 182–188.
[64] WANG P, YAO T, SUN B, et al. Fabrication of mechanically robust superhydrophobic steel surface with corrosion resistance property[J]. RSC Advances, 2017, 7 (63): 699–703.