材料工程  2019, Vol. 47 Issue (4): 105-112   PDF    
http://dx.doi.org/10.11868/j.issn.1001-4381.2017.001503
0

文章信息

刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏
LIU Ming, YAN Ji-kang, YANG Gang, JIANG Gui-min, DU Jing-hong, GAN Guo-you, YI Jian-hong
铜掺杂纳米二氧化钛颗粒的相变研究
Phase transition process of Cu-doped TiO2 nanoparticles
材料工程, 2019, 47(4): 105-112
Journal of Materials Engineering, 2019, 47(4): 105-112.
http://dx.doi.org/10.11868/j.issn.1001-4381.2017.001503

文章历史

收稿日期: 2017-12-05
修订日期: 2018-11-21
铜掺杂纳米二氧化钛颗粒的相变研究
刘明1,2,3 , 严继康1,2,3 , 杨钢2 , 姜贵民1,2,3 , 杜景红1,3 , 甘国友1,3 , 易健宏1,3     
1. 昆明理工大学 材料科学与工程学院, 昆明 650093;
2. 昆明冶金研究院, 昆明 650093;
3. 昆明市稀贵及有色金属先进材料重点实验室, 昆明 650093
摘要: 采用溶胶-凝胶法制备铜掺杂的纳米二氧化钛颗粒。应用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描透射电子显微镜(STEM)、X射线光电子能谱(XPS)和紫外-可见分光光度计(UV-Vis)技术对纳米二氧化钛颗粒的物相组成、平均晶粒尺寸、微观结构、化学态及光吸收性能进行表征。结果表明:Cu掺杂抑制TiO2的相变,在650℃时Cu的氧化物CuO在TiO2颗粒表面出现,掺杂的Cu离子以Cu+的形式存在。掺杂Cu的TiO2光吸收带边显著红移,随着Cu掺杂量的提高,样品光吸收度提高,随着温度的升高,样品紫外-可见光光谱吸收带边红移。
关键词: 二氧化钛    相变        掺杂    溶胶-凝胶法   
Phase transition process of Cu-doped TiO2 nanoparticles
LIU Ming1,2,3, YAN Ji-kang1,2,3 , YANG Gang2, JIANG Gui-min1,2,3, DU Jing-hong1,3, GAN Guo-you1,3, YI Jian-hong1,3    
1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2. Kunming Metallurgical Research Institute, Kunming 650093, China;
3. Kunming Key Laboratory of Advanced Materials of Precious-Nonferrous Metals, Kunming 650093, China
Abstract: Cu-doped TiO2 nanoparticles were synthesized through sol-gel method.X-ray diffraction(XRD), transmission electron microscopy (TEM), scanning transmission electron microscope (STEM), X-ray photoelectron spectroscopy(XPS) and UV-Vis absorption spectrum(UV-Vis) were used to characterize the phase composition, average grain size, morphology of TiO2 nanoparticles, chemical valence states and the optical absorption property of TiO2 nanoparticles. The results show that Cu doping suppresses the phase transition of TiO2. CuO appears on the surface of TiO2 particles at 650℃, and the doped Cu ions are in the form of Cu+. The light absorption bands of Cu-doped TiO2 are red-shifted markedly. The absorbance of the sample increases with the increase of Cu doping amount, and the UV-Vis absorption band is red shifted with the increase of temperature.
Key words: TiO2    phase transition    Cu    doping    sol-gel method   

TiO2作为一种环保半导体光催化材料,在空气净化和污水降解等环境保护方面得到了越来越多的关注[1-3]。与其他半导体光催化材料(ZnO,SnO2,CdS等)相比,TiO2具有化学性质稳定、无毒、廉价、催化活性高等优势,是使用最广泛的光催化材料[4-5]。但是,TiO2材料的缺点限制了它的应用。第一,锐钛矿相TiO2是一个宽禁带半导体,禁带宽度为3.2eV,对太阳光的吸收仅限于波长小于387.5nm的紫外区,即太阳光中可利用的部分不足3%,因此,TiO2对太阳光或者说可见光的利用率很低;第二,光激发产生的电子-空穴对极不稳定,如果没有适当的俘获剂或表面晶格缺陷存在时,会以极快的速率在材料内部或表面复合并以热量的形式释放,大大降低了氧化还原反应的发生,降低了光催化效率[6-7]

为了克服上述缺陷,国内外科研工作者对TiO2进行了各方面的改性研究[8-13],常用的改性方法有表面贵金属沉积[14]、半导体复合[15]、染料敏化[16]和掺杂金属离子等[17]。近年来,人们在掺杂改性TiO2方面做了大量的研究,非金属元素掺杂可以减小禁带与禁带间宽度,同时降低激发所需能量,从而拓宽辐射光的响应范围;金属掺杂TiO2不仅产生掺杂能级,降低禁带宽度,还可以在表面形成晶格缺陷与捕获中心,减少电子-空穴对的复合,提高光催化效率;过渡金属离子掺杂可在晶格中引入缺陷位置或改变结晶度从而影响电子与空穴的复合,其中利用具有3d电子的过渡金属掺杂的研究较多,如Ni[18],Co[19],Cu等。其中铜离子掺杂改性是一个较为有效且便捷的方法,研究者们[20-22]采用溶胶-凝胶法制备铜离子掺杂的TiO2粉体催化剂,分别应用于光催化降解对偏二甲基肼、直接天蓝5B染料和碱性品红等反应,吴树新等[23]用浸渍法制备了掺铜二氧化钛光催化剂,分别以乙酸降解和二氧化碳还原反应为探针,研究了催化剂的光催化氧化光催化还原性能。

金属铜由于具有价格上的优势,在光催化剂改性及应用方面有极大的优势。本工作采用溶胶-凝胶法制备铜掺杂纳米TiO2,针对掺铜TiO2,分析不同烧结温度及掺杂量引起的催化剂的物相结构、平均晶粒尺寸、表面性质、微观结构以及化学态的变化。而TiO2中不同晶型的比例、形态及分布对TiO2的性能有直接影响,因此研究其相变过程,化学态分析,对拓宽其紫外-可见吸收光谱具有一定的指导意义。

1 实验材料与方法 1.1 TiO2粉体制备

按体积比1:2的比例将酞酸四丁酯与无水乙醇混合,搅拌形成溶液A;再将冰醋酸、去离子水和无水乙醇以体积比1:1:10混合成B液。将3%(摩尔分数,下同), 5%的Cu(NO3)3·3H2O溶解到B液中形成C液,时长约1h,慢慢形成溶胶。按体积比4:5将B/C液逐滴加入A液中,滴加过程伴随磁力搅拌,连续搅拌约3h,就可制成淡黄色透明的溶胶;陈化3~5天,固化形成凝胶;将凝胶放入80℃得干燥箱中干燥2天,得到干凝胶。最后,将干凝胶以特定温度曲线烧结,其终了温度设置为450, 500, 550, 600, 650℃,保温30min。随炉冷却后经充分研磨后得到所需掺杂TiO2粉末。

1.2 试样的表征

采用D/max-2200型X射线衍射仪对样品进行物相分析,采用PHI5000 Versaprobe-Ⅱ型X射线光电子能谱仪(XPS)分析掺杂TiO2的化学态变化,采用Tecnai G2 TF30 S-Twin型场发射透射电子显微镜对掺杂样品进行普通透射形貌观察(TEM)和高分辨透射形貌观察(HRTEM),再利用STEM进行样品形貌的观察,采用U-4100型紫外-可见分光光度计(UV-Vis)对样品的紫外可见漫反射光谱进行表征,检测粒子的吸光性能。

根据谢乐公式计算平均晶粒尺寸[24],见式(1):

(1)

式中:D为平均晶粒尺寸;λ为入射X射线波长;β为衍射峰半高宽;θ为衍射峰对应的衍射角。

根据绝热法计算混合物中i相的质量分数Xi,见式(2):

(2)

式中:Ii为物相i实测的相对强度;Ri为参比强度。

2 结果与分析 2.1 XRD分析

图 1(a)为不同Cu掺杂量的TiO2在550℃煅烧的XRD图谱。表 1为Cu掺杂的TiO2的物相组成及晶粒尺寸。从XRD图谱及表 1发现3%和5%的Cu掺杂TiO2均会抑制TiO2相变,通过绝热法计算可知纯TiO2在550℃时粉体金红石相的质量分数为89.2%,Cu掺杂量为3%时金红石相质量分数为57.2%,Cu掺杂量为5%时金红石相质量分数为46.5%,相较于3%的掺杂量抑制TiO2相变效果更强,这可能是因为溶胶-凝胶方法下的Cu掺杂会使Cu以CuO的形式出现在晶界处,对晶格转变起到阻碍作用,使得相变不容易进行。Cu掺杂TiO2本是促进TiO2相变的,但在溶胶-凝胶制备方法下表现出抑制效果,这是因为掺杂机制不同所引起的。

图 1 Cu掺杂量的TiO2的XRD图谱 (a)不同掺杂量;(b)不同煅烧温度 Fig. 1 XRD patterns of Cu-doped TiO2 (a)different doping contents; (b)different temperatures
表 1 Cu掺杂TiO2的物相组成及晶粒尺寸 Table 1 Phase composition and average grain size of Cu-doped titania
Doping content/% Phase composition/% Grain size/nm
Anatase Rutile Anatase Rutile
0 10.8 89.2 27.2 38.1
3 42.8 57.2 25.6 38.0
5 53.5 46.5 12.0 39.7

图 1(b)为5%Cu掺杂TiO2在不同煅烧温度的XRD图谱。对比TiO2标准衍射图可知,450℃时Cu掺杂TiO2已经开始相变,但此时纳米粉体大多处于非晶状态,随着温度的升高,锐钛矿相TiO2的衍射峰逐渐锐化变高,晶体不断长大,500℃开始有金红石相峰(2θ=27.4°)产生但相含量很少。当温度到550℃时金红石相衍射峰明显增高,并且锐钛矿相衍射峰宽化较严重,说明锐钛矿相结晶度不高,根据谢乐公式计算可知锐钛矿相晶粒在12nm左右(如表 1所示),由于衍射峰的宽化,存在的第二相在XRD峰中显示不明显,600℃时锐钛矿相衍射峰消失,650℃时,出现CuO的峰,这是由于温度升高,使得Cu析出形成氧化铜(tenorite)相晶体。

观察图 1(a), (b)锐钛矿相X射线衍射峰(2θ=25.3°)发现,其峰型比较宽,结合表 1可知锐钛矿相晶粒尺寸均比较小,不能再近似看成具有无限多晶面的理想晶体,无序的晶间结构及晶体中缺陷使点阵间距变化导致X射线衍射峰变宽。随温度升高,晶粒逐渐长大,X射线衍射峰也渐渐变窄。说明样品结晶度逐渐变高,结晶趋于完好。

结合图 1(a), (b)分析发现,Cu掺杂虽然抑制TiO2相变,但抑制效果不明显,Cu掺杂TiO2对相变的影响相对滞后50℃左右,这是由于金属离子进入TiO2晶格形成稳定固溶体的能力主要取决于掺杂离子的半径以及价态,当掺杂离子的半径大于或者小于Ti4+半径0.08nm时,掺杂离子替代晶格离子都将引起晶格畸变并积累一定的应变能从而阻碍相变的发生。Cu2+的离子半径(0.072nm)与Ti4+的离子半径(0.068nm)大小虽然接近。但是Cu为二价而Ti为四价,价态的巨大差异是Cu抑制TiO2相变的因素。此外,CuO可在低温下形成,但含量所限不足以形成晶粒,只能以微粒子的形式均匀地分散在纳米TiO2颗粒间,形成Ti—O—Cu键,从而可以促进金红石相的成核与长大。而促进与抑制效果哪个占主导,由制备方法所决定,因此Cu掺杂即使抑制TiO2相变,也不是特别明显。金红石相的标准谱中晶格常数为a=b=0.4593nm,c=2.598nm,通过拟合计算550℃煅烧下Cu掺杂TiO2的XRD谱峰可知其晶格常数为a=b=4.594nm,c=2.960nm,表明Cu基本未进入到TiO2晶格中。

2.2 微观结构分析

图 2是5%Cu掺杂TiO2在550℃烧结不同位置的HRTEM图及其衍射斑点。图 2(a)为晶界处HRTEM图及其衍射斑点,通过计算晶格宽度可知两边晶体结构都是锐钛矿相,符合XRD所测此温度下锐钛矿相晶粒大小。左边晶体的晶格条纹宽度d=0.355, 0.235, 0.265, 0.356nm分别对应锐钛矿相晶粒的(101), (103), (004), (101)面,右边晶体的晶格条纹宽度d=0.353nm对应锐钛矿相晶粒的(101)面,对照两晶粒的衍射斑点,可知其为相同衍射花样,综上可知晶格像中的晶界为大角度倾转晶界。

图 2 550℃时5%Cu掺杂TiO2不同位置的HRTEM (a)晶界处;(b)两相交叠处;(c)基体表面 Fig. 2 HRTEM images of 5%Cu-doped TiO2 obtained at 550℃ (a)crystal boundary; (b)overlapping of two phases; (c)substrate surface

图 2(b)为两相交叠处HRTEM图及其衍射斑点。图 2(b)中存在一个明显的moiré像(线框处),moiré像是不同周期和取向的条纹交叠在一起时形成的干涉条纹,在moiré像左边的晶粒中可以看到一些亮白色的斑点,与基体略有不同,这可能是由于Cu取代TiO2晶格中Ti的位置后在衍射过程中由于元素不同而造成的,又由XRD可知,在550℃下未出现CuO相,掺杂的Cu混在TiO2的晶格中,以取代Ti的位置的方式存在。图中还有一些明显未形成晶格点的空洞位置,这可能是因为Cu的价态与Ti的价态差异太大,在点阵中形成缺陷所引起的。经过对moiré像左边晶格条纹宽度的计算可知d=0.3528nm和d=0.2366nm分别对应锐钛矿相(101)面和(004)面,对moiré像处进行傅里叶变换,可以得到两套衍射斑点,锐钛矿相的衍射斑点较强,而金红石相的衍射斑点较弱,进一步说明线框处为两相交叠处。观察线框区衍射斑点图,可发现(210)面对应斑点位置两张图是一致的,线框区电子衍射斑点还对应着金红石相(202)面和(320)面。

图 2(c)为基体表面的HRTEM图及其衍射斑点,可以看到无数小颗粒,这些小颗粒尺寸均不到4nm,XRD很难检测到,通过傅里叶变换,可知小颗粒是CuO(tenorite相),表明Cu掺杂TiO2中Cu多以CuO的形式聚集在TiO2基体表面,这与XRD检测结果相对应。

2.3 化学态分析

图 3为Cu掺杂TiO2在不同烧结温度下的XPS全谱,表明Cu掺杂氧化钛表面存在Ti, O, Cu, C元素,其中C元素源于样品制样时表面的碳污染。C1s峰(284.8eV)常用来校对测试误差,从而修正其他元素的所在峰位置。观察图中Cu LMM峰的位置可知在450℃时未出现对应峰,但在500℃和550℃出现了微弱Cu LMM的峰。

图 3 Cu掺杂TiO2在不同烧结温度下XPS全谱 Fig. 3 Cu doped TiO2 XPS full spectrum at different sintering temperatures

表 2为不同温度下Cu掺杂TiO2中O1s, Ti2p, Cu2p的原子分数,表 2显示450℃下煅烧的5%Cu掺杂TiO2含70.23%的O1s、26.81%的Ti2p和2.96%的Cu2p,5%Cu掺杂TiO2在500℃煅烧后,含65.85%的O1s、27.19%的Ti2p和6.96%Cu2p,在550℃煅烧后,其含68.10%的O1s、26.67%的Ti2p和5.23%的Cu2p。不考虑吸附氧,O原子约为Ti原子的两倍,Ti原子约为铜原子的19倍,所以Cu2p原子含量应该低于5%,这是由于Cu的原子半径虽然与Ti的原子半径接近,但其价态差异较大,不容易进入TiO2晶格中,而是以CuO或第二相的形式集中在晶界或晶体表面,从而使检测结果偏高。而450℃煅烧时Cu2p含量相比500℃与550℃都低很多,是由于450℃时样品中吸附氧含量较高(由图 4可见),使得相对含量降低。

图 4 Cu掺杂TiO2的拟合O1s谱 (a)450℃;(b)500℃;(c)550℃ Fig. 4 Fitting lines of O1s XPS spectra of Cu-doped titania (a)450℃; (b)500℃; (c)550℃
表 2 5%Cu掺杂TiO2中O1s, Ti2p和Cu2p的原子分数 Table 2 Atom fraction of O1s, Ti2p, and Cu2p in 5%Cu-doped TiO2
Calcination temperature/℃ O1s/% Ti2p/% Cu2p/%
450 70.23 26.81 2.96
500 65.85 27.19 6.96
550 68.10 26.67 5.23

图 4为Cu掺杂TiO2的拟合O1s谱,图 4(a), (b), (c)分别对应Cu掺杂TiO2在450, 500, 550℃煅烧下样品的拟合O1s谱,图 4(a)的晶格氧结合能为529.94eV与图 4(b), (c)的晶格氧结合能530.00eV变化不大,吸附氧结合能也均在531.40~531.50eV之间,吸附氧包含吸附水及表面羟基,其中大部分为表面羟基,其含量由表 3显示,其中Cu掺杂TiO2在450℃下烧结后吸附氧含量相较于500℃和550℃时高很多,高达26.66%,高了其他两个温度的吸附氧含量近一倍,结合XRD测试结果(图 1)可知,可能是由于450℃热处理时TiO2尚处于非晶态与晶态过渡阶段,O在非晶态下不会显示晶格氧的结合能,随着温度升高,结晶度变大,晶体结构逐渐完美,从而吸附氧降低,晶格氧含量升高。

表 3 Cu掺杂TiO2的晶格氧与吸附氧的原子分数 Table 3 Atom fraction of lattice oxygen and adsorbed oxygen in Cu-doped TiO2
Calcination temperature/℃ Lattice oxygen/
%
Absorbed oxygen/
%
450 73.34 26.66
500 85.86 14.14
550 87.04 12.96

图 5是Cu掺杂TiO2的Ti2p拟合图谱。图 5表明Ti2p轨道由于自旋-轨道相互作用而分裂为两个能态,分别为Ti2p1/2和Ti2p3/2,通过对XPS图谱的曲线拟合,图 5(a)(b)(c)中的458.62,458.68,458.72eV的峰对应Ti4+的Ti2p3/2,464.36,464.42,464.36eV的峰对应Ti4+的Ti2p1/2,可见,煅烧后的Cu掺杂TiO2中Ti以Ti4+形式存在晶格中。

图 5 Cu掺杂TiO2的拟合Ti2p谱 (a)450℃;(b)500℃;(c)550℃ Fig. 5 Fitting lines of Ti2p XPS spectra of Cu-doped titania (a)450℃; (b)500℃; (c)550℃

一般而言,Cu的主峰Cu2p3/2高于Cu及Cu2O的峰(1.3±0.2) eV。Cu+峰和Cu2+峰最主要的区别在于卫星峰(shake-up峰),而此卫星峰结合能高于Cu2+主峰,在高于Cu2p峰结合能6eV和8eV处有两个较强的shake-up峰,是Cu2+的卫星峰,shake-up峰的出现是因为3d轨道配体内部电荷转移所致,这种电子转移不能存在于Cu+化合物和金属Cu中,因为它们不能完全填补3d轨道。图 6所示为Cu掺TiO2在不同烧结温度下Cu所对应的XPS谱,可以看到Cu的主峰Cu2p3/2并未出现shake-up卫星峰,由此可知在这3个温度450,500,550℃都没有Cu2+或者说含量很少,Cu2p轨道由于自旋-轨道相互作用而分裂为两个能态,分别为Cu2p1/2和Cu2p3/2。通过对XPS图谱的曲线拟合,图 6(a)~(c)中的932.74,932.90,932.91eV的峰对应Cu+的Cu2p3/2,952.41,952.83,952.67eV的峰对应Cu+的Cu2p1/2,正好与Cu+标准峰所在位置对应。图 5(a)(b)(c)中均未出现Cu2p3/2的shake-up峰,说明样品中不存在Cu2+离子。图 3里的俄歇峰Cu LMM出现了Cu+峰269.6eV,说明Cu掺杂TiO2中Cu是以Cu+的形式存在于晶格中的。这些样品不以Cu2+存在的主要原因是烧结过程中会使烧结炉中氧含量降低从而产生缺氧环境,使Cu2+还原为Cu+

图 6 Cu掺杂TiO2的拟合Cu2p谱 (a)450℃;(b)500℃;(c)550℃ Fig. 6 Fitting lines of Ti2p XPS spectra of Cu-doped TiO2 (a)450℃; (b)500℃; (c)550℃
2.4 紫外-可见漫反射光谱分析

图 7(a)为Cu-TiO2样品在不同煅烧温度紫外-可见光吸收光谱。在350nm附近有较强的吸收带,这可能与O2p电子激发到Ti3d轨道有关,在400~800nm有较强的吸收带,这是TiO2掺杂Cu的效果,金属Cu的吸收带在225~590nm之间。Cu+的3-D集群的吸收带在400~500nm,除此之外,Cu2+的d-d电子跃迁在600~800nm,而CuO中电子跃迁一般小于730nm,这与Cu掺TiO2样品宽吸收带有很大关系。吸收带在350nm之前550℃样品高于其他温度的样品,这可能是因为金红石相和锐钛矿相占比不同,金红石与锐钛矿的接触面具有一个相比大多数金红石和锐钛矿更小的禁带宽度。其次是450℃和500℃的样品,这两个样品都是锐钛矿相,差别在于晶粒尺寸,由XRD可知450℃的样品由于温度低,晶化程度不高,晶粒尺寸小于500℃的样品,比表面积更大,表面能高,缺陷多,容易俘获电子。而吸收带在350nm之前,600℃的样品低于其他所有样品的,是因为锐钛矿相不稳定,具有很多晶格缺陷,因此产生较多可以捕获电子的氧空位来,而金红石相是TiO2稳定相,有较好的结晶态,晶格缺陷相对较少,继而促进了表面电子-空穴对复合,降低了催化活性,并且在TiO2结晶时,金红石相通常形成大的晶粒具有较差的吸附能力,更进一步降低了其对紫外可见光的吸收能力。

图 7 Cu掺杂TiO2的紫外-可见吸收光谱图 (a)不同煅烧温度;(b)不同含量 Fig. 7 UV-Vis diffuse reflection spectra of Cu-doped TiO2 (a)different temperatures; (b)different doping contents

图 7(b)是550℃不同掺杂量的紫外可见吸收光谱。吸收带在350nm之前掺5%Cu的TiO2吸收率略高于其他样品,结合XRD图可知,5%Cu掺杂样品晶粒尺寸要比纯TiO2和3%Cu掺杂样品更小,更加细小的晶粒拥有更大的比表面积,吸光面积也更大,吸光度也越好;5%Cu掺杂TiO2在紫外可见光全谱都要比3%Cu掺杂样品高,这应该是与Cu掺杂量有关,掺杂量越高,吸光度越高。

3 结论

(1) 掺杂Cu抑制纳米TiO2相变,锐钛矿相向金红石相(A→R)转变的相变终了温度在550~600℃附近。

(2) Cu的掺杂量为5%会阻碍TiO2锐钛矿相晶粒长大,掺杂量为3%不会抑制晶粒长大,随着烧结温度的升高,在650℃出现了Cu的氧化物CuO。

(3) Cu掺杂TiO2纳米粉体晶格中的吸附氧含量随温度升高而降低,根据Cu2p含量可知Cu有部分掺入TiO2晶格中,掺杂的Cu离子以Cu+的形式存在于晶格中。

(4) Cu掺杂TiO2光吸收带边红移显著,并且随着掺Cu量的提高,样品光吸收度提高,随着温度的升高,样品紫外-可见光光谱吸收带边红移。

参考文献(References)
[1] PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2013, 15 (3): 1–20.
[2] GUPTA N, PAL B, GUPTA N, et al. Photocatalytic activity of transition metal and metal ions impregnated TiO2 nanostructures for iodide oxidation to iodine formation[J]. Journal of Molecular Catalysis A Chemical, 2013, 371 (5): 48–55.
[3] 徐鹏, 李佑稷, 刘晨, 等. 钒掺杂介孔二氧化钛的制备及可见光催化性能[J]. 高等学校化学学报, 2014, 9 (35): 1954–1961.
XU P, LI Y J, LIU C, et al. Preparation and visible-light photocatalytic performance of mesoporous vanadium-doped titania[J]. Chemical Journal of Chinese Universities, 2014, 9 (35): 1954–1961.
[4] LI H Y, LIU J F, QIAN J J, et al. Preparation of Bi-doped TiO2 nanoparticles and their visible light photocatalytic performance[J]. Chinese Journal of Catalysis, 2014, 35 : 1578–1589. DOI: 10.1016/S1872-2067(14)60124-8
[5] 刘冰, 付荣荣, 高善民, 等. Ti3+自掺杂的TiO2(A)/TiO2(R)/In2O3纳米异质结的制备与可见光催化性能[J]. 无机化学学报, 2016, 32 (2): 223–232.
LIU B, FU R R, GAO S M, et al. Preparation of Ti3+ self-doped TiO2(A)/TiO2(R)/ln2O3 nanoheterojunctions with enhanced visible-light-driven photocatalytic properties[J]. Chinese Journal of Inorganic Chemistry, 2016, 32 (2): 223–232.
[6] 陈颖, 孙露露, 孙男男. 铜掺杂纳米二氧化钛光催化性能研究进展[J]. 材料导报, 2013, 27 (4): 135–138.
CHEN Y, SUN L L, SUN N N. Photocatalytic properties of nanosized titanium dioxide loaded with copper:a review[J]. Materials Review, 2013, 27 (4): 135–138.
[7] 谢一飞, 方莹, 李镇. 二氧化钛改性对光催化降解甲基橙的研究[J]. 印染助剂, 2012, 29 (10): 15–18.
XIE Y F, FANG Y, LI Z. Study on the photocatalytic degra-dation of methyl orange with modified titanium dioxide[J]. Tex-tile Printing and Dying Additive, 2012, 29 (10): 15–18. DOI: 10.3969/j.issn.1004-0439.2012.10.004
[8] WANG H, LEWIS J P. Second-generation photocatalytic mater-ials:anion-doped TiO2[J]. Journal of Physics:Condensed Matt-er, 2006, 18 (2): 421. DOI: 10.1088/0953-8984/18/2/006
[9] 唐泽华, 胡兰青. 铜、锌共掺杂二氧化钛薄膜的制备及光催化活性[J]. 硅酸盐通报, 2015, 34 (4): 1089–1094.
TANG Z H, HU L Q. Preparation and photocatalytic activity of copper and zinc co-doped TiO2 thin film[J]. Bulletin of the Chinese Ceramic Society, 2015, 34 (4): 1089–1094.
[10] SHER S M S A, PARK A R, ZHANG K, et al. Green synth-esis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2012, 4 (8): 3893–3901.
[11] 沈毅, 任富建, 刘红娟. 掺杂TiO2的光催化性能研究[J]. 稀有金属材料与工程, 2006, 35 (11): 1841–1844.
SHEN Y, REN F J, LIU H J. Progress in research on phot-ocatalytic performance of doped-TiO2[J]. Rare Metal Materials and Engineering, 2006, 35 (11): 1841–1844. DOI: 10.3321/j.issn:1002-185X.2006.11.039
[12] HUANG Z Y, GAO Z G, et al. Facile synthesis of S-doped reduced TiO2-x with enhanced visible-light photocatalytic perfor-mance[J]. Chinese Journal of Catalysis, 2017, 38 : 821–830. DOI: 10.1016/S1872-2067(17)62825-0
[13] ZHANG Y J, XU Y, LI T, et al. Preparation of ternary Cr2O3-SiC-TiO2 composites for the photocatalytic production of hydro-gen[J]. Particuology, 2012, 10 (1): 46–50. DOI: 10.1016/j.partic.2011.08.001
[14] SHA J, FUMIDE S. Photocatalytic activities enhance for decomposition of organic compounds over metal-photodepositing titanium dioxide[J]. Chem Eng J, 2004, 97 (2/3): 203–211.
[15] LU C Y, CHEN Z, HAN H C, et al. Carbon nanoparticles coated TiO2 nanofibers and photocatalytic activity[J]. J lnorg Chem, 2010, 26 (3): 313–317.
[16] 冉慧丽, 黄浩, 马梦君, 等. 性能增强的双层TiO2复合膜染料敏化太阳能电池[J]. 无机材料学报, 2017, 32 (10): 1049–1054.
RAN H L, HUANG H, MA M J, et al. Dye-sensitized solar cells based on double-layer composite film with enhanced photov-oltaic performance[J]. Journal of Inorganic Materials, 2017, 32 (10): 1049–1054.
[17] 李雅泊, 郑玉婴, 刘阳龙. 铁掺杂二氧化钛空心球的制备及性能[J]. 化工学报, 2016, 67 (10): 4493–4499.
LI Y B, ZHENG Y Y, LIU Y L. Preparation and properties of iron doped TiO2 hollow microspheres[J]. CIESC Journal, 2016, 67 (10): 4493–4499.
[18] 段志操, 姜贵民, 荣雪荃, 等. 镍掺杂二氧化钛的化学态分析[J]. 人工晶体学报, 2016, 45 (6): 1590–1601.
DUAN Z C, JIANG G M, RONG X Q, et al. Analysis of chemical states of Ni-doped titania[J]. Journal of Synthetic Crystals, 2016, 45 (6): 1590–1601. DOI: 10.3969/j.issn.1000-985X.2016.06.028
[19] 陈晴空, 吉芳英, 关伟, 等. Co2+离子掺杂对TiO2结构与光催化活性的影响[J]. 四川大学学报(工程科学版), 2013, 45 (5): 192–198.
CHEN Q K, JI F Y, GUAN W, et al. Effects of doping Co2+ ion on the structures and photocatalytic activity of TiO2[J]. Jou-rnal of Sichuan University(Engineering Science Edition), 2013, 45 (5): 192–198.
[20] 徐文国, 贾燕, 沙晶, 等. 铜钕共掺杂纳米TiO2光催化降解偏二甲肼废水[J]. 北京理工大学学报, 2010, 30 (8): 988–991.
XU W G, JIA Y, SHA J, et al. Study of Cu and Nd co-doped TiO2 photocatalytic property of degradating unsymmetrical dime-thylhydrazine[J]. Journal of Beijing Institute of Techno-logy, 2010, 30 (8): 988–991.
[21] 高建林, 宋玲, 张慧军, 等. 掺铜离子TiO2/膨润土复合光催化降解直接天蓝5B染料[J]. 石化技术与应用, 2009, 27 (6): 501–503.
GAO J L, SONG L, ZHANG H J, et al. Photocatalytic degra-dation of direct sky-blue 5B dyes by copper ion doped titania/bentonite composite photocatalyst[J]. Petrochemical Technology and Application, 2009, 27 (6): 501–503. DOI: 10.3969/j.issn.1009-0045.2009.06.001
[22] 齐帅, 刘义新, 孟丽华, 等. 掺铜TiO2薄膜光催化降解碱性品红的研究[J]. 工业水处理, 2009, 29 (5): 50–53.
QI S, LIU Y X, MENG L H, et al. Cu-doping TiO2 thin film and its photocatalytic degradation of alkaline fuchsin[J]. Industrial Water Treatment, 2009, 29 (5): 50–53. DOI: 10.3969/j.issn.1005-829X.2009.05.014
[23] 吴树新, 尹燕华, 何菲, 等. 掺铜TiO2光催化剂光催化氧化还原性能的研究[J]. 感光科学与光化学, 2005, 23 (5): 333–339.
WU S X, YIN Y H, HE F, et al. Photocatalytic redox perfor-mance of copper modified TiO2 coupling with SnO2[J]. Photo-graphic Science and Photochemistry, 2005, 23 (5): 333–339. DOI: 10.3969/j.issn.1674-0475.2005.05.003
[24] XU X, WANG M, HOU Y, et al. Effect of thermal annealing on structural properties, morphologies and electrical properties of TiO2 thin films grown by MOCVD[J]. Crystal Research and Technology, 2002, 37 (5): 431–439. DOI: 10.1002/1521-4079(200205)37:5<431::AID-CRAT431>3.0.CO;2-D