材料工程  2017, Vol. 45 Issue (9): 81-85   PDF    
http://dx.doi.org/10.11868/j.issn.1001-4381.2015.001062
0

文章信息

赵海涛, 马瑞廷, 刘瑞萍
ZHAO Hai-tao, MA Rui-ting, LIU Rui-ping
热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒
Synthesis of Ni0.5Zn0.5Fe2O4 Nanoparticles by Thermal Decomposition Method
材料工程, 2017, 45(9): 81-85
Journal of Materials Engineering, 2017, 45(9): 81-85.
http://dx.doi.org/10.11868/j.issn.1001-4381.2015.001062

文章历史

收稿日期: 2015-08-28
修订日期: 2017-01-08
热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒
赵海涛 , 马瑞廷, 刘瑞萍    
沈阳理工大学 材料科学与工程学院, 沈阳 110159
摘要: 采用热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒,研究表面活性剂用量、回流温度和回流时间对产物尺寸、形貌以及分散性的影响。通过X射线衍射仪(XRD)、透射电子显微镜(TEM)和振动样品磁强计(VSM)对样品的结构、形貌与磁性能进行了表征。结果表明:增加表面活性剂的用量,产物的粒径减小,分散性明显提高,而提高回流温度和延长回流时间则会使产物粒径增加,但粒径分布也会变宽。在三辛基氧化膦(TOPO)用量为0.6mmol,260℃回流1h条件下制备产物的饱和磁化强度为49.38A·m2/kg,矫顽力为7143.20A/m,剩余磁化强度为5.76A·m2/kg,表现为亚铁磁性。
关键词: 热分解法    Ni-Zn铁氧体    分散性    磁性能   
Synthesis of Ni0.5Zn0.5Fe2O4 Nanoparticles by Thermal Decomposition Method
ZHAO Hai-tao , MA Rui-ting, LIU Rui-ping    
School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
Abstract: Ni0.5Zn0.5Fe2O4 nanoparticles were synthesized by thermal decomposition method. The influence of reaction conditions such as the amount of the surfactant, refluxing temperature and time on the size, morphology and dispersibility was investigated. The structure, morphology and magnetic properties of the samples were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and vibrating sample magnetometry(VSM). The results indicate that increasing the amount of the surfactant is beneficial to obtain samples with smaller particle size and better dispersibility, and the improving refluxing temperature and extending refluxing time is beneficial to obtain samples with larger particle size, but with wider size distribution. The saturation magnetization of the sample is determined to be 49.38A·m2/kg, coercivity is 7143.20A/m and remanent magnetization is 5.76A·m2/kg with ferrimagnetic behavior at room temperature when the reaction condition is determined as follows, the amount of TOPO is 0.6mmol, the refluxing temperature is 260℃ and the refluxing time is 1h.
Key words: thermal decomposition method    Ni-Zn ferrite    dispersibility    magnetic property   

镍锌铁氧体具有较高的饱和磁化强度,较大的磁导率,较小的矫顽力和较低的涡流损耗,是一种典型的软磁材料,被广泛应用于微波器件、变压器的核心材料以及磁记录系统[1-4]

制备铁氧体的方法有很多,常见的方法主要有固相烧结法[5]、化学共沉淀法[6]、水热法[7]、溶胶-凝胶法[8]、多元醇法[9]和热分解法[10]等。在这些方法中热分解法具有其独特的优势,如产物纯度高,粒径大小可控,分布窄等,因此成为近年来研究的热点。Song等[11]以油酸铁为前驱体通过热分解法制备了立方形和球形的纳米Fe3O4,研究发现立方形的纳米颗粒具有更好的饱和磁化强度,较好的磁共振成像对比效果和磁热效应。Zhang等[12]通过高温热分解法制备油酸包覆的粒径为19nm的颗粒,研究发现油酸通过化学作用吸附在纳米颗粒的表面,形成单层结构,可以有效地减小粒子之间的相互作用,有利于得到单分散的纳米颗粒。Li等[13]采用热分解法成功制备了单分散粒径约为24nm的铁氧体,并研究了产物的磁性能,研究发现产物具有较高的饱和磁化强度(78.68A·m2/kg),室温下表现为超顺磁性。然而目前采用热分解法制备镍锌铁氧体的报道较少,本工作采用高温热分解法制备了纳米Ni0.5Zn0.5Fe2O4铁氧体,并研究了不同反应条件对纳米颗粒的形貌和粒径的影响。

1 实验材料与方法 1.1 Ni0.5Zn0.5Fe2O4纳米粒子的制备

按照摩尔比为2:0.5:0.5准确称取乙酰丙酮铁、乙酰丙酮镍、乙酰丙酮锌,溶解到40mL的十八烯中,加入0.2mmol的三辛基氧化膦(TOPO),在室温下用高纯氩气将反应混合物脱气10min后加热至80℃搅拌0.5h,继续升温至120℃,注入一定比例的油酸(OA)和油铵(OAm),保温0.5h,之后升温至260℃,回流反应1h。停止加热冷却至室温后离心洗涤,最后将洗涤后的黑色沉淀物置于60℃真空干燥箱中干燥24h,得到Ni0.5Zn0.5Fe2O4纳米粒子。

1.2 试样的表征

物相分析用PW-3040型X射线衍射仪,扫描范围2θ为20°~70°。利用Philips EM 420型透射电镜观察粉体的形貌。采用VSM-2000型振动样品磁强计分析产物的磁性能。

2 结果与分析 2.1 物相分析

图 1为TOPO加入量为0.2mmol,260℃回流1h条件下制备的Ni0.5Zn0.5Fe2O4纳米颗粒的XRD图谱。由图 1可见,特征峰的位置在2θ=30.05°,35.39°,36.95°,43.07°,53.36°,57.13°和62.60°处,对应的晶面指数与PDF卡片08-0234 (Ni, Zn)Fe2O4的标准图谱中(220),(311),(222),(400),(422),(511) 和(440) 一致,表明所制备的纳米粒子是立方晶系尖晶石结构。衍射峰尖锐且无明显的杂质峰,说明产物的纯度较高,结晶性较好。衍射峰出现明显的宽化,表明样品的尺寸达到了纳米尺度。通过Scherrer公式计算晶粒尺寸:

(1)
图 1 Ni0.5Zn05.Fe2O4纳米粒子的XRD图谱 Fig. 1 XRD pattern of Ni0.5Zn0.5Fe2O4 nanoparticles

式中:D为晶粒尺寸,nm;λ为X射线的波长,取0.154178nm;β为最强衍射峰的半高宽,弧度;θ为布拉格衍射角,(°)。选取图 1中的最强峰根据Scherrer公式计算得出纳米晶体的平均晶粒尺寸约为13.8nm。

2.2 TOPO用量对粒子形貌的影响

图 2为TOPO的加入量分别为0.2, 0.4mmol和0.6mmol条件下制备的Ni0.5Zn0.5Fe2O4纳米粒子的透射电镜照片。由图 2可见,不同TOPO用量下制备的颗粒粒径均较小,达到了纳米尺寸。随着TOPO用量的增加,纳米颗粒的粒径明显减小,从14nm减小到6nm,粒径分布变窄,分散性明显提高,颗粒形貌更加均一。这是因为TOPO作为表面活性剂吸附在纳米颗粒的表面,可以有效地阻碍颗粒的长大,使产物粒径减小,同时表面活性剂吸附在纳米颗粒表面还会产生空间位阻效应,有效地阻止颗粒因分子间相互作用力而发生团聚,提高产物的分散性。当TOPO用量较少时,表面活性剂不能完全包覆在颗粒表面,只能吸附在部分晶面上,使得不同晶面的生长速率不一致[14],产物的形貌不规则;随着TOPO用量增加,表面活性剂可以完全包覆在颗粒表面,形成高分散的近似球形的纳米颗粒。

图 2 不同TOPO用量制备的Ni0.5Zn0.5Fe2O4纳米粒子的透射电镜照片 (a)0.2mmol; (b)0.4mmol; (c)0.6mmol Fig. 2 TEM images of the synthesized Ni0.5Zn0.5Fe2O4 nanoparticles with various TOPO amounts (a)0.2mmol; (b)0.4mmol; (c)0.6mmol
2.3 回流温度对粒子形貌的影响

图 3为TOPO的加入量为0.6mmol,分别在240, 260℃和280℃下制备的Ni0.5Zn0.5Fe2O4纳米粒子的透射电镜照片。由图 3可见,不同回流温度下制备的纳米颗粒分散性较好,粒径分布窄,且随着回流温度升高颗粒粒径逐渐增加。这与纳米颗粒的成核生长机制有关[15]:回流温度较低时,成核过程占主导地位,大量成核使产物的粒径减小,随着回流温度升高,成核和生长过程发生竞争,成核和生长交替进行,使产物粒径增加,同时回流温度较高有利于晶粒生长,但是回流温度过高时,颗粒粒径也会明显增加,因此最佳反应温度应为260℃。

图 3 不同回流温度下制备的Ni0.5Zn0.5Fe2O4纳米粒子的透射电镜照片 (a)240℃; (b)260℃; (c)280℃ Fig. 3 TEM images of the synthesized Ni0.5Zn0.5Fe2O4 nanoparticles with various refluxing temperatures (a)240℃; (b)260℃; (c)280℃
2.4 回流时间对粒子形貌的影响

图 4为TOPO的加入量为0.6mmol,在260℃下分别回流1, 1.5h和2h制备的Ni0.5Zn0.5Fe2O4纳米粒子的透射电镜照片。由图 4可以看出,不同回流时间下制备的Ni0.5Zn0.5Fe2O4纳米粒子分散性均较好,颗粒粒径较小、分布较窄。随着回流时间的延长,颗粒粒径增加,粒径分布变宽,形貌不均一。这是因为回流时间较短时,成核的纳米颗粒生长时间较短,产物粒径较小,随着回流时间延长,纳米颗粒之间发生二次成核或Ostwald熟化机制使产物粒径增加,颗粒尺寸不均一。

图 4 不同回流时间下制备的Ni0.5Zn0.5Fe2O4纳米粒子的透射电镜照片 (a)1h;(b)1.5h;(c)2h Fig. 4 TEM images of the synthesized Ni0.5Zn0.5Fe2O4 nanoparticles with various refluxing time (a)1h;(b)1.5h;(c)2h
2.5 磁性能分析

图 5为TOPO的加入量为0.6mmol,在260℃下回流1h所得的Ni0.5Zn0.5Fe2O4 纳米粒子室温(300K)下的磁滞回线。由图 5可见,产物的饱和磁化强度值(Ms)为49.38A·m2/kg,矫顽力(Hc)为7143.20A/m,剩余磁化强度(Mr)为5.76A·m2/kg,表现为亚铁磁性。产物的饱和磁化强度较大,矫顽力较小,这是因为制备的纳米镍锌铁氧体的结晶性高,形貌均一。然而纳米粒子的饱和磁化强度较传统的Ni0.5Zn0.5Fe2O4块体材料饱和磁化强度73A·m2/kg明显降低[16],这可能是因为纳米粒子表面自旋倾斜效应,以及反应过程中作为表面活性剂等非磁性物质TOPO吸附在粒子表面,形成非磁性层,降低了相同质量下磁性物质的含量,从而使产物的饱和磁性能降低[17]

图 5 Ni0.5Zn0.5Fe2O4纳米粒子室温(300K)磁滞回线 Fig. 5 Magnetic hysteresis loop for the synthesized Ni0.5Zn0.5Fe2O4 nanoparticles at 300K

镍锌铁氧体为典型的混合尖晶石结构铁氧体,其化学分子式可以表示为(ZnxFe1-x)[Ni1-xFe1+x]O4[18]其中()代表四面体间隙(A位),[]代表八面体间隙(B位)。铁氧体的磁性能与阳离子在间隙位置的分布密切相关[19],在正尖晶石结构ZnFe2O4铁氧体中,非磁性离子Zn2+全部占据四面体间隙(A位),磁性离子Fe3+全部占据八面体间隙(B位),这样导致A-B之间超交换作用较弱,饱和磁化强度较小。而在Ni0.5Zn0.5Fe2O4铁氧体中,Ni2+的加入会优先占据八面体间隙(B位),导致部分Fe3+从八面体间隙转移到四面体间隙中,使铁氧体中A-B间发生超交换作用的耦合离子数增多,A-B之间超交换作用增强,因此纳米Ni0.5Zn0.5Fe2O4铁氧体的饱和磁化强度明显增加[20]

3 结论

(1) 以乙酰丙酮金属盐为前驱体,十八烯为溶剂,采用热分解法制备了单分散的Ni0.5Zn0.5Fe2O4纳米颗粒,产物的粒径为6~14nm。

(2) 随着表面活性剂用量的增加,产物的粒径减小,分散性明显提高。回流温度提高,颗粒粒径增大。随着回流时间的延长,产物的粒径增加,粒径分布变宽,形貌不均一。最佳的生长条件:TOPO用量为0.6mmol,260℃回流1h。

(3) 最佳生长条件下制备的Ni0.5Zn0.5Fe2O4室温(300K)饱和磁化强度值为49.38A·m2/kg,矫顽力为7143.20A/m,剩余磁化强度为5.76A·m2/kg,表现为亚铁磁性。

参考文献(References)
[1] WANG L S, NIE S J, WANG J B, et al. Effect of experiment parameters on the structure and magnetic properties of NiZn-ferrite films[J]. Materials Chemistry and Physics, 2015, 160 : 321–328. DOI: 10.1016/j.matchemphys.2015.04.044
[2] WANG L, DONG H, LI J, et al. Effects of annealing temperature on structural and magnetic properties of Ni0.8Zn0.2Fe2O4 thin films[J]. Ceramics International, 2014, 40 (7): 10323–10327. DOI: 10.1016/j.ceramint.2014.03.004
[3] GUTIERREZ-LPEZA J, LEVENFELDA B, VAREZA A, et al. Study of the densification, mechanical and magnetic properties of Ni-Zn ferrites sintered in a solar furnace[J]. Ceramics International, 2015, 41 (5): 6534–6541. DOI: 10.1016/j.ceramint.2015.01.096
[4] 赵海涛, 张强, 刘瑞萍, 等. 单分散纳米锌铁氧体的制备及其磁性能[J]. 材料工程, 2016, 44 (1): 103–107.
ZHAO H T, ZHANG Q, LIU R P, et al. Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticles[J]. Journal of Materials Engineering, 2016, 44 (1): 103–107. DOI: 10.11868/j.issn.1001-4381.2016.01.016
[5] IBRAHIM I R, HASHIM M, NAZLAN R, et al. Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni0.3Zn0.7Fe2O4[J]. Journal of Magnetism and Magnetic Materials, 2014, 355 : 265–275. DOI: 10.1016/j.jmmm.2013.12.024
[6] RASHAD M M, RAYAN D A, TURKY A O, et al. Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using Co-precipitation method[J]. Journal of Magnetism and Magnetic Materials, 2015, 374 : 359–366. DOI: 10.1016/j.jmmm.2014.08.031
[7] 曹慧群, 魏波, 刘剑洪, 等. 水热法制备纳米镍锌铁氧体粉体及其磁性能[J]. 硅酸盐学报, 2007, 35 (6): 713–716.
CAO H Q, WEI B, LIU J H, et al. Hydrothermal synthesis and magnetic properties of nanosized nickel zinc ferrite powder[J]. Journal of the Chinese Ceramic Society, 2007, 35 (6): 713–716.
[8] 张永刚, 徐波, 王树林, 等. 镍锌铁氧体纳米材料制备及其光催化性能研究[J]. 功能材料, 2013, 44 (14): 2010–2013.
ZHANG Y G, XU B, WANG S L, et al. Preparation and photocatalytic properties of Ni-Zn ferrite nanopower[J]. Journal of Functional Materials, 2013, 44 (14): 2010–2013. DOI: 10.3969/j.issn.1001-9731.2013.14.008
[9] 张宁, 吴华强, 冒丽, 等. 微波多元醇法制备单分散Ni1-xZnxFe2O4/MWCNTs与磁性能[J]. 功能材料, 2012, 43 (18): 2554–2557.
ZHANG N, WU H Q, MAO L, et al. Microwave-assisted polyol synthesis and magnetic properties of monodisperse Ni1-xZnxFe2O4/MWCNTs nanocomposites[J]. Journal of Functional Materials, 2012, 43 (18): 2554–2557. DOI: 10.3969/j.issn.1001-9731.2012.18.029
[10] ZHU Y, JIANG F Y, CHEN K X, et al. Size-controlled synthesis of monodisperse superparamagnetic iron oxide nanoparticles[J]. Journal of Alloys and Compounds, 2011, 509 (34): 8549–8553. DOI: 10.1016/j.jallcom.2011.05.115
[11] SONG M J, ZHANG Y, HU S L, et al. Influence of morphology and surface exchange reaction on magnetic properties of monodisperse magnetite nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 408 : 114–121.
[12] ZHANG L, HE R, GU H C. Oleic acid coating on the monodisperse magnetite nanoparticles[J]. Applied Surface Science, 2006, 253 (5): 2611–2617. DOI: 10.1016/j.apsusc.2006.05.023
[13] LI D, JIANG D L, CHEN M, et al. An easy fabrication of monodisperse oleic acid-coated Fe3O4 nanoparticles[J]. Materials Letters, 2010, 64 (22): 2462–2464. DOI: 10.1016/j.matlet.2010.08.025
[14] 李浩, 张喜斌. 络合剂/表面活性剂对溶剂热法制备钴纳米花的影响[J]. 无机盐工业, 2010, 42 (6): 30–32.
LI H, ZHANG X B. Effect of complexing agents/surfactants on flowery Co microcrystals prepared by solvothermal method[J]. Inorganic Chemicals Industry, 2010, 42 (6): 30–32.
[15] 陈瑾. 高温多元醇法制备超顺磁CoFe2O4纳米颗粒磁共振造影剂[J]. 无机材料学报, 2009, 24 (5): 967–972.
CHEN J. High temperature polyol synthesis of superparamagnetic CoFe2O4 nanoparticles for magnetic resonance imaging contrast agents[J]. Journal of Inorganic Materials, 2009, 24 (5): 967–972.
[16] ABBAS M, PARVATHEESWARA RAO B, KIM C G. Shape and size-controlled synthesis of Ni-Zn ferrite nanoparticles by two different routes[J]. Materials Chemistry and Physics, 2014, 147 (3): 443–451. DOI: 10.1016/j.matchemphys.2014.05.013
[17] HAJALILOUA A, HASHIM M, EBRAHIMI-KAHRIZSANGI R, et al. Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process[J]. Ceramics International, 2014, 40 (4): 5881–5887. DOI: 10.1016/j.ceramint.2013.11.032
[18] GHASEMIN A, MOUSAVINIA M. Structural and magnetic evaluation of substituted NiZnFe2O4 particles synthesized by conventional sol-gel method[J]. Ceramics International, 2014, 40 (2): 2825–2834. DOI: 10.1016/j.ceramint.2013.10.031
[19] LAZAREVIĆ Z Ž, MILUTINOVIĆ A N, JOVALEKIĆČ D, et al. Spectroscopy investigation of nanostructured nickel-zinc ferrite obtained by mechanochemical synthesis[J]. Materials Research Bulletin, 2015, 63 : 239–247. DOI: 10.1016/j.materresbull.2014.12.005
[20] WU H Q, ZHANG N, MAO L, et al. Controlled synthesis and magnetic properties of monodisperse Ni1-xZnxFe2O4/MWCNT nanocomposites via microwave-assisted polyol process[J]. Journal of Alloys and Compounds, 2013, 554 : 132–137. DOI: 10.1016/j.jallcom.2012.11.185