材料工程  2016, Vol. 44 Issue (12): 107-117   PDF    
http://dx.doi.org/10.11868/j.issn.1001-4381.2016.12.017
0

文章信息

吕生华, 朱琳琳, 李莹, 贺亚亚, 杨文强
LYU Sheng-hua, ZHU Lin-lin, LI Ying, HE Ya-ya, YANG Wen-qiang
氧化石墨烯复合材料的研究现状及进展
Current Situation and Progress of Graphene Oxide Composites
材料工程, 2016, 44(12): 107-117
Journal of Materials Engineering, 2016, 44(12): 107-117.
http://dx.doi.org/10.11868/j.issn.1001-4381.2016.12.017

文章历史

收稿日期: 2015-06-03
修订日期: 2016-04-22
氧化石墨烯复合材料的研究现状及进展
吕生华 , 朱琳琳, 李莹, 贺亚亚, 杨文强    
陕西科技大学 资源与环境学院, 西安 710021
摘要: 氧化石墨烯(Graphene Oxide,GO)以其独特的二维纳米片层结构、超大的比表面积和亲水极性界面,使其在功能复合材料领域有着广泛的应用和发展前景。本文综述了近年来GO复合材料在增强增韧、吸附分离、光催化及生物医药等方面的研究现状及进展,介绍了GO调控高分子材料及水泥基体形成规整有序的微观结构形貌而产生显著的增强增韧效果的机理,分析了GO复合材料在吸附、催化、生物医药等方面作用原理,指出了GO增强增韧复合材料、GO吸附复合材料和GO光催化复合材料的应用前景和发展趋势。
关键词: 氧化石墨烯    复合材料    微观结构    增强增韧    光催化降解   
Current Situation and Progress of Graphene Oxide Composites
LYU Sheng-hua , ZHU Lin-lin, LI Ying, HE Ya-ya, YANG Wen-qiang    
College of Resources & Environment, Shaanxi University of Science & Technology, Xi'an 710021, China
Abstract: Graphene oxide (GO) has wide applications and development prospects in the functional composites owing to its many unique properties, such as two-dimensional structure and large theoretical specific surface areas as well as hydrophilic and polarized interface. The present situation and progress of the graphene oxide composites used in reinforcing and toughening, adsorption separation, photocatalysis and biological medicine were introduced in this paper. The mechanism of producing reinforcing and toughening of polymer and cement based composites caused by forming regular and ordered microstructure regulated with GO nanosheets was mainly summerized. Meanwhile, application principle of the GO composites in the field of adsorption, photocatalysis and biological medicine were analyzed. Finally, the application and development trend of GO composites in reinforcing and toughness as well as adsorption and photocatalysis were pointed out.
Key words: graphene oxide    composite material    microstructure    reinforcing and toughening    photocatalytic degradation   

氧化石墨烯(Graphene Oxide,GO)是将石墨氧化后经过超声剥离、分散、粉碎后得到的片层状物质,从化学结构上看GO是石墨烯的氧化产物,与石墨烯相同的是其结构单元具有由C原子构成六元环状结构,与石墨烯不同的片层结构上带有亲水性基团,如羧基、羟基和环氧基等,在水相中容易分散成为稳定的纳米片层分散液,GO分散液中的聚集态GO是由不同片层数构成,其片层的数量与GO的制备过程及分散条件有关系,对GO的应用有重要的影响。目前,GO的用途主要有:(1)制备还原氧化石墨烯(Reduction of Graphene Oxide,RGO)。通过GO与还原性的化学试剂如水合肼、苯肼、抗坏血酸、没食子酸、硼氢化钠等[1-11]反应制备RGO,将RGO广泛应用于电池的电极材料、超级电容器、生物传感器、催化剂组分等领域;(2)制备吸附材料。GO具有很好的吸附性能,通过与一些化学材料的复合及化学改性[12-17]等反应,在GO上接枝特定吸附功能化学基团,提高吸附的选择性和效果;(3)制备复合材料。GO与有机物和无机物通过原位聚合、物理共混等方法制备复合材料,显著提高材料的强度和韧性等性能[18, 19]。由于GO的纳米片层结构状态,直接使用GO受到了很大的限制,目前GO的主要用途是制备复合材料,其中增强增韧复合材料、吸附复合材料及其具有催化、蛋白修复等功能的复合材料成为了研究的热点。本文主要综述了采用GO制备增强增韧、吸附、光催化降解等功能复合材料的研究进展,展望了GO在复合材料中的应用前景。

1 GO/聚合物复合材料研究进展 1.1 GO/聚L-乳酸(PLLA)基复合材料

GO具有纳米片层结构,其尺寸大小可以调控,而且片层上带有羧基、羟基等化学基团,在能够形成晶体的环境中,GO的参与可以调控和改变晶体的形状和聚集方式,从而提高材料的热稳定性和力学性能。研究表明,L-聚乳酸(Poly(L-Lactic Acid),PLLA)存在力学性能差、结晶速率低、降解速率慢以及生物相容性差的问题[20-23]。GO纳米片层能够调控聚PLLA的结晶行为,使其形成规整有序、分布均匀的花瓣状晶体(图 1),显著提高PLLA耐热性能和力学性能[20]

图 1 纯PLLA(a), PLLA/0.5%GO(b), PLLA/1%GO(c)和PLLA/2%GO(d)在138℃的POM图[20] Fig. 1 POM images of neat PLLA(a), PLLA/0.5%GO(b), PLLA/1%GO(c) and PLLA/2%GO(d) crystallized at 138℃[20]
1.2 GO/聚ε-己内酯(PCL)基复合材料

RGO是GO在还原剂的作用下得到的,是含氧量较低的GO。Wang等[25]研究了RGO和GO对聚ε-己内酯(Poly(e-Caprolactone),PCL)微观结构及性能的影响,结果表明,掺有RGO和GO的聚合物的微观结构中均出现了规整的晶体(图 2),其屈服应力和杨氏模量都有约24%的提升,GO比RGO 的增强增韧效果更加明显。

图 2 不同结晶时间时纯PCL(1)和PCL/0.1%RGO纳米复合物(2)的POM图[25] (a)1min;(b)4min;(c)7min Fig. 2 POM images of neat PCL(1) and PCL/0.1%RGO nanocomposites(2) in different crystallization time[25] (a)1min;(b)4min;(c)7min
1.3 GO/玻璃纤维基复合材料

Ning等[26]讨论了玻璃纤维、氨基改性玻璃纤维和用GO改性玻璃纤维的微观结构和性能,结果表明,GO的引入使得玻璃纤维的半晶态聚合物在界面处的结晶性能明显提升,同时材料的力学性能也获得了较大的提升。因此,GO可以用于玻璃纤维基复合材料的增强和增韧。

1.4 水泥/GO复合材料

GO纳米片层对于水泥水化产物的形状及聚集态结构和性能有显著的调控作用。吕生华等[27]研究了GO纳米片层掺入量为水泥质量的0%~0.06%时,水泥基复合材料的微观结构和力学性能变化(表 1),结果表明,添加GO后水泥试样的力学性能有了显著的提高。

表 1 引入GO纳米片层养护3天/28天的水泥抗压、抗折、拉伸强度[27] Table 1 Compressive,flexural,tensile strength of conversion 3d/28d cement directed introduction GO[27]
Mass of GO/g Compressive strength/MPa Rate of increase/% Flexural strength/MPa Rate of increase/% Tensile strength/MPa Rate of increase/%
0.00 36.74/59.31 0.0/0.0 5.63/8.84 0.0/0.0 1.94/3.83 0.0/0.0
0.01 41.23/67.24 12.2/13.4 8.55/13.41 51.9/51.7 2..47/5.63 28.0/47.0
0.02 48.33/75.66 31.5/27.6 8.68/11.75 54.2/32.9 2.48/6.11 28.6/59.5
0.03 53.32/82.36 45.1/38.9 9.11/14.21 61.8/60.7 2.93/6.34 51.0/65.5
0.04 56.42/84.35 53.6/42.2 8.13/13.54 44.4/53.2 2.72/5.83 40.2/52.2
0.05 58.45/87.69 59.0/47.9 7.21/11.51 28.1/30.2 2.41/5.20 24.2/35.8

掺有GO的水泥基体SEM形貌如图 3所示[27]。结果表明,没有掺入GO的水泥基体虽然有棒状和片状晶体,但是其聚集方法呈现杂乱无章的堆叠,存在着大量的缝隙和孔洞。掺入GO的水泥基体中形成了由棒状、花状和多面体状晶体构成的规整有序的聚集状态,同时发现晶体在结构疏松的部位以及孔隙、孔洞部位较多,其生长过程对于这些结构缺陷进行了修复,使得水泥基复合材料的结构均匀和紧实,从而提高了水泥基材料的力学性能。

图 3 掺入不同含量GO纳米片层分散液的水泥浆养护28天后SEM形貌[27] (a)0.00%;(b)0.01%;(c)0.02%;(d)0.03%;(e)0.04%;(f)0.05% Fig. 3 SEM morphologies of GO nanosheets directed introduction at 28d[27] (a)0.00%;(b)0.01%;(c)0.02%;(d)0.03%;(e)0.04%;(f)0.05%

吕生华等[28, 29]研究了GO 片层含氧量对水泥水化产物的结晶形状和性能的影响,结果表明,随着含氧量的增加,水泥基体中形成的规则晶体的数量增多,而力学性能也呈现增加的趋势(图 4)。GO片层含氧量为9.31%时,形成规整的花状结构,体积较小,数量较少,分布不均匀,力学性能提高率在20%左右;含氧量在25.43%时,花状晶体体积变大,数量增多,分布均匀,力学性能提高率达30%;含氧量为31.78%时,形成多面体结构,体积大,数量多,抗压强度高。

图 4 不同GO含氧量的水泥水化产物养护28d的SEM图[29] (a)9.31%;(b)25.43%;(c)31.78% Fig. 4 SEM images of cement hydration products at 28d with GO of different oxygen content added 9.31%(a),25.43%(b) and 31.78%(c)[29]

吕生华等[28, 29]通过观察GO掺量为0.03%时不同养护时间水泥水化基体的SEM形貌(图 5),分析了其生长的过程,结果表明,养护1天后较多的微球状晶体生长出来,养护3天后长成棒状的晶体,养护7天后长出了由棒状晶体组装形成的花形晶体,养护28天后长成大体积的花状晶体,养护60天时花状晶体形成了密集的簇状晶体,90天时花状晶体通过相互贯穿、交叉构成较为密实的交联状结构。这些水化晶体的生长形成了交联、密集的微观结构,提高了水泥基材料的体积稳定性和力学性能。

图 5 GO掺量0.03%时在不同水化时间的水泥水化晶体的SEM图[30] (a)1天;(b)3天;(c)7天;(d)28天;(e)60天;(f)90天 Fig. 5 SEM images of cement hydration crystals with 0.03%GO with different hydration time[30] (a)1d;(b)3d;(c)7d;(d)28d;(e)60d;(f)90d

在上述分析的基础上,Lv等[30]提出GO调控水泥水化结晶的作用机理(图 6)。首先,水泥基中的活性成分与GO上的活性基团作用,形成晶体的生长点,吸引水泥基材料的活性成分继续反应形成棒状晶体,聚集在一起的棒状晶体在水泥基体中的孔洞、裂缝处分裂形成花状晶体。GO纳米片层在水泥水化晶体的形成过程中起着模板和组装的作用。

图 6 GO 对水泥水化产物的调控机理图(a)和SEM图(b)[30] Fig. 6 Schematic(a) and SEM image(b) of the regulatory mechanism of GO on cement hydration products[30]

Fakhim课题组[31]掺入了0.1%~2.0%的GO,制备得到GO-cement复合材料。发现在GO掺量为水泥量的1.5%时,水泥基材料的拉伸强度提高了48%。通过SEM检测,发现在水泥基体中有针状晶体聚集区和片层状晶体聚集区,晶体聚集区的存在说明GO对水泥水化产物形状有调控作用,也表明GO在水泥基体中分布不均匀。通过一定的手段使得GO纳米片层均匀地分散在水泥基体中,其微观结构也呈现了规整有序、均匀的微观结构,力学性能提高了很多,说明了GO纳米片层的分散是关键因素。

2 GO复合吸附材料研究进展

GO片层具有超大比表面积,表面上含有羧基、羟基、环氧基等基团[32],使得GO具有特别优异的吸附性能,GO在吸附材料中有着重要的应用[33-36]

2.1 GO磁性复合吸附材料研究进展

复合材料的磁性主要是引入了磁性Fe3O4粒子,利用磁性使其再生时方便回收吸附,提高吸附材料的循环使用的次数。张燚等[37]采用高温分解法制备得到了粒径18nm左右的Fe3O4纳米粒子,经过复杂的表面修饰后与GO得到磁性复合材料,饱和磁场强度达41.3A·m2·kg-1。Fan等[38]制备了结构稳定、可重复使用的磁性壳聚糖/GO复合材料,具有再生方便快捷的特点,对于Pb(Ⅱ)的吸附能力可达76.94mg·g-1,解吸效率达90.3%。Fan等[39]研究了Fe3O4-β环糊精-壳聚糖/GO纳米吸附材料对染料的吸附,初次的吸附能力为50mg·g-1,经过5次的吸附循环过程后,对废水中甲基蓝的吸附量能够保持在30mg·g-1。Ye等[40]制备得到Fe3O4/GO/壳聚糖复合材料,将其应用于对蛋白质的富集吸附,吸附量达到了7.57mg·g-1。Ehsan等[41]用3-巯基丙烷对GO-磁性壳聚糖(GO-MC)复合材料进行了改性,制备得到一种新型的生物吸附剂,可用于污水中Hg2+的预富集和萃取。饶维等[42]对环境中含量低、危害大的四溴双酚A的吸附处理进行了研究,制备出了对四溴双酚A(Tetrabromobisphenol A,TBBPA),具有高选择性和高吸附容量的磁性印迹复合材料,对TBBPA材料的饱和吸附量为16.33mg·g-1,并且TBBPA回收效率达86.30%~98.60%,而没有加入TBBPA的磁性复合材料的饱和吸附量仅为0.87mg·g-1。研究表明,ZnO具有化学惰性[43],在光催化降解有机污染物时扮演着非常重要的角色,然而ZnO只能吸收紫外区域的光进行催化降解,若在ZnO上掺杂Ni[44]、强吸附性能的GO[45]就可以明显提高其降解性能。Qin等[46]制备了Ag/ZnO/GO复合材料,可使催化降解后罗丹明B的去除效率达90%。

2.2 GO非磁性复合吸附材料研究进展

非磁性GO基复合材料主要是处理水体中的重金属污染和有机物污染,是磁性GO基复合材料的重要补充,同样获得了广泛的研究。

壳聚糖分子链上含有较多的-NH2和其他活性基团,使其具有独特的理化性能和生物活化功能,因而广泛应用于吸附和絮凝领域。但是壳聚糖本身的力学性能很差,限制了其应用。而GO具有很强的力学性能和反应活性,许多研究人员将壳聚糖和GO复合后进行了研究。GO/CS复合材料对不同污染物吸附性能如表 2所示。

表 2 GO/CS复合材料对不同污染物最大吸附量 Table 2 Data on GO/CS composites for the maximum adsorption capacity of different pollutants
Adsorbate Pollutant Adsorption capacity/ (mg·g-1) Reference
Heavy metal ion Pb(II) 99 [47]
Cu(II) 25.4,53.69 [48, 49]
Cr(Ⅵ) 219.5 [50]
Cd (II) 177 [51]
Organic pollutant Congo red 294.12 [52]
Methyl orange 567.07 [49]
Reactive black 5 dye 227 [53]

Luo等[54]发现,除了壳聚糖含有较多与重金属离子作用的基团外,聚氨基硅氧烷(Poly3-Aminopropyltriethoxysilane,PAS)上含有的大量-NH2,能够同一些金属离子如Pb(Ⅱ)形成稳定的络合物。GO具有大比表面积和丰富的含氧官能团,在GO纳米片层上交联氨基硅氧烷低聚物(以3-氨丙基三乙氧基硅烷为交联剂)制备高性能吸附剂,明显提升了复合材料的吸附性能,在pH=4~6、温度为303K时PAS/GO,GO/AS的最大吸附量分别为312.5,119.05mg·g-1,聚合物复合材料的吸附能力明显高于PAS。复合材料的PAS/GO的制备流程如图 7所示。

图 7 PAS/GO复合材料的制备流程[54] Fig. 7 Schematic illustration of preparation for PAS/GO composites[54]

Xia等[55]将不同浓度的GO作为外加剂加入到聚偏二氟乙烯(Poly(Vinylidene Fluoride),PVDF),采用相转移催化法制备得到了PVDF-GO复合薄膜,应用于天然有机物质的吸附去除,吸附性能提高了1倍。GO的加入不仅提升了复合物薄膜的机械强度[56-58],而且增强了材料的抗菌性能[59, 60]和渗透性能,对污水处理能力也得到提升。

当前吸附剂的发展方向是高选择性、高吸附效率和高重复利用率,GO的掺入有助于提高吸附剂选择性和吸附效率。

3 GO光催化降解复合材料研究进展

光催化技术广泛应用于降解有机物[61-63]物质,研究发现,光催化剂的催化能力不仅与其晶型、粒径大小和结晶程度相关,而且往往会与某些材料复合产生协同作用,如与碳纳米管、富勒烯、石墨烯、GO等进行复合,可以提高光子在材料中的传递速率,增强复合材料对于废水中的有机物和空气中的有害气体的光催化性能。

张琼等[64]用Ti(SO4)2和经不同浓度的NaOH处理的不同分散程度的GO分散液复合,经过干燥得到一系列TiO2/GO复合材料,测其光催化降解性能时以浓度为20mg/L的甲基橙为目标降解物,降解效率η=1.16mg/(min·g)。当经过多次循环降解过程和4周敞口存放,其光催化效率只发生稍微降低,表现出非常好的重复利用率和化学稳定性,为TiO2/GO复合材料在催化降解废水有机物和空气中的有害气体提供了更多的参考。Chen等[65]通过两步法改性制备了ZnO/GO复合材料,与单独使用ZnO和GO相比,复合材料光催化降解甲基橙的效率获得了很大的提高。Qin等[46]将Ag纳米颗粒和GO负载到ZnO上,应用于降解罗丹明B,结果表明,复合材料将催化剂可用光源的范围扩充到可见-紫外光区,并取得很好的催化降解效果。对于罗丹明B的催化降解,Li等[66]采用原位聚合法制备了多组分复合材料GO-PA-CeOX,结果显示,聚丙烯酰胺(Polyacryl Amide,PAM)和Ce的氧化物很好地负载在了GO的纳米片层上,最后将复合材料和GO应用于催化降解罗丹明B的实验,在相同的条件下进行对比,经过30min和70min的紫外光的照射,GO和复合材料对罗丹明B的降解效率分别为18%,31%和50%,80%,复合材料的催化降解性能明显优于GO。

综上所述,GO光催化复合材料在光催化降解领域表现出非常优异的性能,原因归结为:(1)GO的引入在很大程度上增加了复合材料的比表面积,提高了复合材料与光子的接触机会,增强了复合材料对有机污染物的吸附能力;(2)在复合材料界面形成的异质结改善了光生电子和空穴的复合;(3)GO的引入在一定程度上提高了催化材料的吸收波长的范围,为在可见光范围内进行光催化降解提供了可能。

4 GO生物医学复合材料研究进展

GO对于生物蛋白的富集吸附是一种非特异性吸附,会引起蛋白质发生聚集、结构异变和失掉蛋白活性[67, 68] 。而聚乙二醇(Polyethylene Glycol,PEG)是一种多羟基化合物,具有很好的生物相容性,对于细胞和生物蛋白吸附性能较弱。如果将聚乙二醇和GO进行复合,可以很好地改善GO表面化学性质,并且能够形成和蛋白质相互作用的纳米表面,改善GO对蛋白质结构和活性的不利影响。Chen等[69]通过原位生长和自组装法,将FeOOH纳米棒与经过PEG接枝改性的GO进行复合,制备了对生物全血白蛋白有高效吸附作用的FeOOH-PEG-GO复合材料,结果表明,该复合材料对牛血清白蛋白(没有亚铁血红素)的最高吸附量达1377.4mg·g-1,在pH=12~13时的解析率为70%,很好地减弱了对非特异性蛋白的吸附。

DNA尿嘧啶糖基化酶(Uracil-DNA Glycosylase,UDG)是一种重要的剪切修复酶,有维护基因结构完整性的作用。Zhou等[70]将示踪荧光探针负载到GO片层上,制备了一种GO基生物探针,发现在较宽的动态范围(0.0017~0.8U/mL)有很好的检测效果,而且最低检出限为0.0008U/mL。Xin等[71]则采用静电纺丝法制备了热塑型的小直径人工血管支架聚氨酯-GO复合材料,其力学性能、表面性能、拉伸性能、杨氏模量及亲水性均满足要求。在抑菌方面,Andreia等[59]以AgNO3为银纳米颗粒前驱物、柠檬酸钠为稳定剂,将银纳米颗粒装饰到GO 片层上,制备了GO/Ag纳米复合材料,应用于抑制绿脓假单胞菌,经过1h的抑菌实验,复合材料的抑菌效率在95%以上。Justin等[72]在药物载体研究中采用便宜易得、易生物降解的壳聚糖和高机械强度、比表面积大和多活性官能团的GO制备纳米复合材料,在给药设备中有潜在的应用价值。Wang等[73]用魔芋葡甘聚糖(Konjac Glucomannan,KGM)、海藻酸钠(Sodium Alginate,SA)和GO为原料,以Ca2+做交联剂制备水凝胶KGM/SA/GO,使得抗癌药物达到可控释放,当pH=1.2时药物的平衡释放率仅为38.02%,而pH=6.8时,经过12h后平衡释放率达84.19%。KGM/SA/GO凝胶过程如图 8所示。

图 8 KGM(a),SA(b)和KGM/SA/GO(c)凝胶过程[73] Fig. 8 Gel process of KGM(a),SA(b),and KGM/SA/GO(c)[73]

GO基生物医学复合材料在吸附特异性蛋白、药物载体、基因工程及调控药物的释放等领域表现出优异的性能,随着研究的深入,相信GO基生物医学复合材料最终将在抗癌领域有所突破。

5 结束语

目前,GO复合材料的应用和研究已经成为研究的热点之一,原因是GO独特的结构和性能使其形成的复合材料在强度韧性、吸附分离和光催化等方面比起传统的材料具有明显的优势,满足了一些领域技术发展对于材料性能的要求。同时,GO与其他材料形成复合材料是GO发挥作用的主要途径,其中GO在复合材料中的作用又与GO的结构和性能有很大的关系。比如,GO增强增韧高分子材料和水泥基材料,就是通过GO调控高分子和水泥基材料,从而形成了规整有序的微观结构而实现其增强增韧作用。今后,GO在增强增韧、吸附分离、光催化等功能复合材料的发展趋势是:(1)GO复合材料的制备及GO在其中的作用原理是研究的重点;(2)GO增强增韧复合材料具有产业化、规模化应用的可能,其中GO增强增韧高分子材料、GO增强增韧水泥基复合材料、GO增强增韧陶瓷材料等方面的技术已经比较成熟,达到了产业化的要求;(3)GO复合材料在吸附、光催化和生物医药领域的研究还处于研究阶段,有关GO复合材料的结构和性能之间的关系还没有建立,产业化关键技术还没有掌握,GO复合材料的规模化、高效率及可重复使用的技术问题还没有解决,这些方面的产业化应用还需要做大量的研究工作。

参考文献(References)
[1] FAN Z J, WANG K, WEI T, et al. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder[J]. Carbon,2010, 48 (5) : 1686 –1689. DOI: 10.1016/j.carbon.2009.12.063
[2] 杨勇辉, 孙红娟, 彭同江. 石墨烯的氧化还原法制备及结构表征[J]. 无机化学学报,2011, 26 (11) : 2083 –2090. YANG Y H, SUN H J, PENG T J. Synthesis and structural characterization of graphene by oxidation reduction[J]. Chinese Journal of Inorganic Chemistry,2011, 26 (11) : 2083 –2090.
[3] AKHAVAN O, GHADERI E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation[J]. The Journal of Physical Chemistry C,2009, 113 (47) : 20214 –20220. DOI: 10.1021/jp906325q
[4] SHIN H J, KIM K K, BENAYAD A. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials,2009, 19 (12) : 1987 –1992. DOI: 10.1002/adfm.v19:12
[5] 万武波, 赵宗彬, 胡涵, 等. 柠檬酸钠绿色还原制备石墨烯[J]. 新型炭材料,2011, 26 (1) : 16 –20. WAN W B, ZHAO Z B, HU H, et al. "Green" reduction of graphene oxide to graphene by sodium citrate[J]. New Carbon Materials,2011, 26 (1) : 16 –20.
[6] JIN Y H, HUANG S, ZHANG M, et al. A green and efficient method to produce graphene for electrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent[J]. Applied Surface Science,2013, 268 (3) : 541 –546.
[7] AKHAVAN O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol[J]. Carbon,2011, 49 (1) : 11 –18. DOI: 10.1016/j.carbon.2010.08.030
[8] CHOOBTASHANI M, AKHAVAN O. Visible light-induced photocatalytic reduction of graphene oxide by tungsten oxide thin films[J]. Applied Surface Science,2013, 276 : 628 –634. DOI: 10.1016/j.apsusc.2013.03.144
[9] AKHAVAN O, KALAEE M, ALAVI Z S, et al. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide[J]. Carbon,2012, 50 (8) : 3015 –3025. DOI: 10.1016/j.carbon.2012.02.087
[10] KAUPPILA J, KUNNAS P, DAMLIN P. Electrochemical reduction of graphene oxide film in aqueous and organic solutions[J]. Electrochemical Acta,2013, 89 : 84 –89. DOI: 10.1016/j.electacta.2012.10.153
[11] WANG C, ZHAN L, QIAO W M, et al. Preparation of graphene nanosheets through detonation[J]. New Carbon Materials,2011, 26 (1) : 21 –25. DOI: 10.1016/S1872-5805(11)60063-2
[12] STANKOVICH S, PINER R D, NGUYEN S T, et al. Synthesis and exfoliation of isocyanate treated graphene oxide nanoplatelets[J]. Carbon,2006, 44 (15) : 3342 –3347. DOI: 10.1016/j.carbon.2006.06.004
[13] FANG F, KONG L T, HUANG J R, et al. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J]. Journal of Hazardous Materials,2014, 270 : 1 –10. DOI: 10.1016/j.jhazmat.2014.01.031
[14] ZHUANG X D, CHEN Y, LIU G, et al. Conjugated polymer-functionalized graphene oxide:synthesis and nonvolatile rewritable memory effect[J]. Advanced Materials,2010, 22 (15) : 1731 –1735. DOI: 10.1002/adma.v22:15
[15] CHIEN H C, TSAI L D, HUANG C P, et al. Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells[J]. International Journal of Hydrogen Energy,2013, 38 (31) : 13792 –13801. DOI: 10.1016/j.ijhydene.2013.08.036
[16] YAZMIN I A-V, CESAR C L-P, MARCELA M, et al. Nitroxide-functionalized graphene oxide from graphite oxide[J]. Carbon,2013, 63 : 376 –389. DOI: 10.1016/j.carbon.2013.06.093
[17] ISIS E M-C, JOEY D M, HANG N N, et al. Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications[J]. Carbon,2014, 77 (10) : 289 –301.
[18] 郑玉婴. 功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J]. 材料工程,2015, 43 (2) : 99 –102. ZHENG Y Y. Preparation and characterization of functionalized graphene oxide nanoribbons/EVA composite films[J]. Journal of Materials Engineering,2015, 43 (2) : 99 –102.
[19] 杨文彬, 张丽, 刘菁伟, 等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程,2015, 43 (3) : 91 –97. YANG W B, ZHANG L, LIU J W, et al. Progress in research on preparation and application of graphene composites[J]. Journal of Materials Engineering,2015, 43 (3) : 91 –97.
[20] MARIA L D L. Crystallization behavior of poly(L-lactic acid)[J]. Polymer,2006, 47 (21) : 7554 –7563. DOI: 10.1016/j.polymer.2006.08.054
[21] RENÉ A, MARIA L D L. Kinetics of crystal nucleation of poly(L-lactic acid)[J]. Polymer,2013, 54 (26) : 6882 –6885. DOI: 10.1016/j.polymer.2013.10.056
[22] ARTUR M P, SUSANA M, INES C G, et al. Biocompatibility of poly(lactic acid) with incorporated graphene-based materials[J]. Colloids and Surfaces B:Biointerfaces,2013, 104 (3) : 229 –238.
[23] WANG H S, QIU Z B. Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites:influences of graphene oxide loading and crystallization temperature[J]. Thermochimica Acta,2012, 527 : 40 –46. DOI: 10.1016/j.tca.2011.10.004
[24] WANG H S, QIU Z B. Crystallization behaviors of biodegradabale poly(L-lactic acid)/graphene oxide nanocomposites from the amorphous state[J]. Thermochim Acta,2011, 526 (1-2) : 229 –236. DOI: 10.1016/j.tca.2011.10.006
[25] WANG B J, LI Y G, WENG G S, et al. Reduced graphene oxide enhances the crystallization and orientation of poly(ε-caprolactone)[J]. Composites Science Technology,2014, 96 : 63 –70. DOI: 10.1016/j.compscitech.2014.03.012
[26] NING N Y, ZHANG W, YAN J J, et al. Largely enhanced crystallization of semi-crystalline polymer on the surface of glass fiber by using graphene oxide as a modifier[J]. Polymer,2013, 54 (1) : 303 –309. DOI: 10.1016/j.polymer.2012.11.045
[27] 吕生华, 孙婷, 刘晶晶, 等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及机制[J]. 复合材料学报,2014, 31 (3) : 644 –652. LV S H, SUN T, LIU J J, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites[J]. Acta Materiae Compositae Sinica,2014, 31 (3) : 644 –652.
[28] 吕生华, 周庆芳, 孙婷, 等. GO纳米片层对水泥水化晶体及胶砂力学性能的影响[J]. 建筑材料学报,2014, 17 (5) : 749 –754. LV S H, ZHOU Q F, SUN T, et al. Effect of graphene oxide nanosheets on cement hydration crystals and mechanical properties of mortar[J]. Journal of Building Materials,2014, 17 (5) : 749 –754.
[29] 吕生华, 孙婷, 马宇娟, 等. 纳米氧化石墨烯对水泥复合材料中水化晶体结构的控制及增韧作用[J]. 混凝土,2013 (11) : 1 –6. LV S H, SUN T, MA Y J, et al. Regulation of graphene oxide on microstructure of hydration crystals of cement composites and its impact reinforcing toughenss[J]. Concrete,2013 (11) : 1 –6.
[30] LV S H, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites construct[J]. Construction and Building Materials,2013, 49 (12) : 121 –127.
[31] FAKHIM B, HASSANI A, RASHIDI A, et al. Preparation and mechanical properties of graphene oxide:cement nanocomposites[J]. The Scientific World Journal,2014 (4) : 983 –990.
[32] KIM J, COTE L J, KIM F, et al. Graphene oxide sheets at interfaces[J]. Journal of the American Chemistry Society,2010, 132 : 8180 –8186. DOI: 10.1021/ja102777p
[33] CHANG S T, LIN K-Y A, LU C. Efficient adsorptive removal of Tetramethylammonium hydroxide(TMAH) from water using graphene oxide[J]. Separation and Purification Technology,2014, 133 (36) : 99 –107.
[34] WANG H, YUAN X Z, WU Y, et al. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution[J]. Applied Surface Science,2013, 279 (8) : 432 –440.
[35] 孙彤, 崔欣, 候雨, 等. 氧化石墨烯的功能化及生物相容性研究[J]. 应用化工,2013, 42 (5) : 806 –808. SUN T, CUI X, HOU Y, et al. The functionalization and biocompatibility of graphene oxide[J]. Applied Chemical Industry,2013, 42 (5) : 806 –808.
[36] SUN J P, LIANG Q L, HAN Q, et al. One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples[J]. Talanta,2015, 132 (4) : 557 –563.
[37] 张燚, 陈彪, 杨祖培, 等. Fe3O4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征[J]. 物理化学学报,2011, 27 (5) : 1261 –1266. ZHANG Y, CHEN B, YANG Z P, et al. Controlled synthesis and characterization of the structure and property of Fe3O4 nanopartical-graphene oxide composites[J]. Acta Physico-Chimica Sinica,2011, 27 (5) : 1261 –1266.
[38] FAN L L, LUO C N, SUN M, et al. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites[J]. Colloids and Surfaces B:Biointerfaces,2013, 103 (1) : 523 –529.
[39] FAN L L, LUO C N, SUN M, et al. Synthesis of magnetic-cyclodextrin chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal[J]. Colloids and Surfaces B:Biointerfaces,2013, 103 (6) : 601 –607.
[40] YE N S, XIE Y L, SHI P Z, et al. Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption[J]. Materials Science and Engineering:C,2014, 45 : 8 –14. DOI: 10.1016/j.msec.2014.08.064
[41] EHSAN Z, ALI M, ALI J. A novel hierarchical nanobiocomposite of graphene oxide-magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples[J]. Analytica Chimica Acta,2014, 850 : 49 –56. DOI: 10.1016/j.aca.2014.08.048
[42] 饶维, 蔡蓉, 陈星, 等. 氧化石墨烯表面新型磁性四溴双酚A印迹复合材料的制备及吸附性能[J]. 高等学校化学学报,2013, 34 (6) : 1353 –1359. RAO W, CAI R, CHEN X, et al. Preparation and adsorption properties of novel magnetic tetrabromobisphenol a molecularly imprinted composite material based on graphene oxide surface[J]. Chemical Journal of Chinese Universities,2013, 34 (6) : 1353 –1359.
[43] ZHU C Q, LU B A, SU Q, et al. A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst[J]. Nanoscale,2012, 4 (10) : 3060 –3064. DOI: 10.1039/c2nr12010k
[44] LIU J W, YANG T, MA L Y, et al. Nickel nanoparticle decorated graphene for highly selective isolation of polyhistidine-tagged proteins[J]. Nanotechnology,2013, 24 (50) : 505704 . DOI: 10.1088/0957-4484/24/50/505704
[45] NGUYEN T L, DO T C, NGO X D, et al. Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization[J]. Journal of Alloys and Compounds,2014, 615 (2) : 843 –848.
[46] QIN J L, LI R, LU C Y, et al. Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption-degradation effects[J]. Ceramics International,2015, 41 (3) : 4231 –4237. DOI: 10.1016/j.ceramint.2014.11.046
[47] HE Y Q, ZHANG N N, WANG X D. Adsorption of graphene oxide/chitosan porous materials for metal ions[J]. Chinese Chemical Letters,2011, 22 (7) : 859 –862. DOI: 10.1016/j.cclet.2010.12.049
[48] YU B W, XU J, LIU J H, et al. Adsorption behavior of copper ions on graphene oxide-chitosan aerogel[J]. Journal of Environmental Chemical Engineering,2013, 1 (4) : 1044 –1050. DOI: 10.1016/j.jece.2013.08.017
[49] WANG Y, LIU X, WANG H F, et al. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions[J]. Journal of Colloid and Interface Science,2014, 416 : 243 –251. DOI: 10.1016/j.jcis.2013.11.012
[50] GE H C, MA Z W. Microwave preparation of triethylenetetramine modified grapheneoxide/chitosan composite for adsorption of Cr(VI)[J]. Carbohydrate Polymers,2015, 131 : 280 –287. DOI: 10.1016/j.carbpol.2015.06.025
[51] LI X Y, ZHOU H H, WU W Q, et al. Studies of heavy metal ion adsorption on chitosan/sulfydryl functionalized graphene oxide composites[J]. Journal of Colloid and Interface Science,2015, 448 : 389 –397. DOI: 10.1016/j.jcis.2015.02.039
[52] DU Q J, SUN J K, LI Y H, et al. Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles[J]. Chemical Engineering Journal,2014, 245 (6) : 99 –106.
[53] NIKOLINA A T, GEORGE Z K, NIKOLAOS K L, et al. Graphite oxide/chitosan composite for reactive dye removal[J]. Chemical Engineering Journal,2013, 217 : 256 –265. DOI: 10.1016/j.cej.2012.12.008
[54] LUO S L, XU X L, ZHOU G Y, et al. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater[J]. Journal of Hazardous Materials,2014, 274 (12) : 145 –155.
[55] XIA S J, NI M Z. Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal[J]. Journal of Membrane Science,2015, 473 : 54 –62. DOI: 10.1016/j.memsci.2014.09.018
[56] LIN D, LIU C R, CHENG G J. Single-layer graphene oxide reinforced metal matrix composites by laser sintering:microstructure and mechanical property enhancement[J]. Acta Materialia,2014, 80 : 183 –193. DOI: 10.1016/j.actamat.2014.07.038
[57] PASZKIEWICZ S, SZYMCZYK A, ŠPITALSKY Z, et al. Structure and properties of nanocomposites based on PTT-block-PTMO copolymer and graphene oxide prepared by in situ polymerization[J]. European Polymer Journal,2014, 50 : 69 –77. DOI: 10.1016/j.eurpolymj.2013.10.031
[58] LIN Q L, QU L J, LU Q F, et al. Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites[J]. Polymer Testing,2013, 32 (2) : 330 –337. DOI: 10.1016/j.polymertesting.2012.11.014
[59] ANDREIA F D F, DIEGO S T M, STELA M M M, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J]. Colloids and Surfaces B:Biointerfaces,2014, 113 : 115 –124. DOI: 10.1016/j.colsurfb.2013.08.006
[60] YU L, ZHANG Y, ZHANG B, et al. Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties[J]. Journal of Membrane Science,2013, 447 : 452 –462. DOI: 10.1016/j.memsci.2013.07.042
[61] 张建斌, 田海锋, 查飞, 等. 纳米二氧化钛光催化降解染料废水动力学研究[J]. 应用化工,2014, 43 (8) : 1369 –1372. ZHANG J B, TIAN H F, ZHA F, et al. Study of dynamics and photocatalytic degredation of dyeing wastewater by nano-titanium dioxide[J]. Applied Chemical Industry,2014, 43 (8) : 1369 –1372.
[62] 张平, 莫尊理, 张春, 等. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程,2015, 43 (3) : 72 –77. ZHANG P, MO Z L, ZHANG C, et al. Preparation and photocatalytic properties of magnetic responsive TiO2/graphene nanocomposites[J]. Journal of Materials Engineering,2015, 43 (3) : 72 –77.
[63] SANTOS V C, WILSON K, LEE A F, et al. Physicochemical properties of WOx/ZrO2 catalysts for palmitic acid esterification[J]. Applied Catalysis B:Environmental,2015, 162 : 75 –84. DOI: 10.1016/j.apcatb.2014.06.036
[64] 张琼, 贺蕴秋, 陈小刚, 等. 氧化钛/氧化石墨烯复合结构及其光催化性能[J]. 科学通报,2010, 55 (7) : 620 –628. ZHANG Q, HE Y Q, CHEN X G, et al. Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite[J]. Chinese Science Bulletin,2010, 55 (7) : 620 –628.
[65] CHEN Y L, ZHANG C E, DENG C, et al. Preparation of ZnO/GO composite material with highly photocatalytic performance via an improved two-step method[J]. Chinese Chemical Letters,2013, 24 (6) : 518 –520. DOI: 10.1016/j.cclet.2013.03.034
[66] LI C P, ZHU H J, HOU T T, et al. Simultaneous polymerization and crosslinking for the synthesis of molecular-level graphene oxide-polyacryl amide-CeOx composites[J]. Chemical Engineering Journal,2015, 263 : 27 –37. DOI: 10.1016/j.cej.2014.10.100
[67] ZHANG M, MAO X B, WANG C X, et al. The effect of graphene oxide on conformation change,aggregation and cytotoxicity of HIV-1 regulatory protein(Vpr)[J]. Biomaterials,2012, 34 (4) : 1383 –1390.
[68] ALAVA T, MANN J A, THEODORE C, et al. Control of the graphene-protein interface is required to preserve adsorbed protein function[J]. Analytical Chemistry,2013, 85 (5) : 2754 –2759. DOI: 10.1021/ac303268z
[69] CHEN M L, WANG H, MAO Q X, et al. Hydrous-ferric oxide nanorods grown on PEGylated graphene oxide with superior capacity for selective adsorption of albumin[J]. Carbon,2015, 85 : 335 –343. DOI: 10.1016/j.carbon.2014.12.108
[70] ZHOU D M, XI Q, LIANG M F, et al. Graphene oxide-hairpin probe nanocomposite as a homogeneous assay platform for DNA base excision repair screening[J]. Biosensors and Bioelectronics,2013, 41 (5) : 359 –365.
[71] XIN J, HAO Y M, MAX R S, et al. Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications[J]. Materials Science and Engineering C,2015, 49 : 40 –50. DOI: 10.1016/j.msec.2014.12.060
[72] JUSTIN R, CHEN B Q. Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites[J]. Carbohydrate Polymers,2014, 103 (1) : 70 –80.
[73] WANG J, LIU C H, SHUAI Y, et al. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels[J]. Colloids and Surfaces B:Biointerfaces,2014, 113 (13) : 223 –229.