材料工程  2015, Vol. 41 Issue (1): 104-112   PDF    
http://dx.doi.org/10.11868/j.issn.1001-4381.2015.01.018
0

文章信息

刘顾, 汪刘应, 程建良, 王炜, 吴永发. 2015.
LIU Gu, WANG Liu-ying, CHENG Jian-liang, WANG Wei, WU Yong-fa. 2015.
碳纳米管吸波材料研究进展
Progress in Research on Carbon Nanotubes Microwave Absorbers
材料工程, 41(1): 104-112
Journal of Materials Engineering, 41(1): 104-112.
http://dx.doi.org/10.11868/j.issn.1001-4381.2015.01.018

文章历史

收稿日期:2013-06-13
修订日期:2014-11-06
碳纳米管吸波材料研究进展
刘顾1, 汪刘应1 , 程建良2, 王炜1, 吴永发3    
1. 第二炮兵工程大学, 西安 710025;
2. 第二炮兵装备研究院, 北京 100085;
3. 第二炮兵驻7105军代室, 成都 610100
摘要:介绍了碳纳米管的结构和性能特点,归纳和分析了碳纳米管吸波材料的最新进展,并提出了现有研究中存在的不足及进一步研究的方向.目前碳纳米管吸波材料的研究主要集中在不同结构碳纳米管吸波材料、磁性金属/碳纳米管复合吸波材料、稀土/碳纳米管复合吸波材料、铁氧体/碳纳米管复合吸波材料、聚合物/碳纳米管复合吸波材料以及陶瓷/碳纳米管复合吸波材料.对碳纳米管进行形貌控制、结构优化、表面修饰、复合掺杂改性以及界面结合和耐温性能的强化,是碳纳米管吸波材料今后的发展方向.
关键词碳纳米管    吸波材料    复合材料    
Progress in Research on Carbon Nanotubes Microwave Absorbers
LIU Gu1 WANG Liu-ying1 CHENG Jian-liang2 WANG Wei1 WU Yong-fa3    
1. The Second Artillery Engineering University, Xi'an 710025, China;
2. Equipment Institute of the Second Artillery, Beijing 100085, China;
3. Military Representative Office of Second Artillery in 7105, Chengdu 610100, China
Abstract: The physical structure, performance and recent advances of carbon nanotubes microwave absorbers were reviewed and summarized. The approaches for further researches were also suggested. Recent researches on carbon nanotubes microwave absorbers are mainly focused on carbon nanotubes microwave absorbers with different structures, magnetic metal/carbon nanotubes microwave absorbers, rare earth/carbon nanotubes microwave absorbers, ferrite/carbon nanotubes microwave absorbers, polymer/carbon nanotubes microwave absorbers and ceramic/carbon nanotubes microwave absorbers. For the broad application of carbon nanotubes as electromagnetic wave absorbers, further investigations should focus on aspect control, structure optimization, surface decoration, composite doping modification, interface bonding and oxidation protection of carbon nanotubes.
Key words: carbon nanotubes    microwave absorber    composite    

子通讯和雷达探测技术的迅速发展,极大地提高了战争中目标的搜索和跟踪能力,武器装备受到越来越严重的威胁。通过隐身技术可以减小目标的雷达散射截面(Radar Cross Section,RCS)[1, 2],减弱雷达回波强度,使探测系统不易发现或发现距离缩短,从而提高武器装备的作战生存和突防攻击能力。与此同时,随着电子技术的飞速发展,电磁波污染问题日益严重。研究具有吸波能力的材料有着迫切的实际需要。电磁波吸收材料作为当前民用防护和提高军事武器装备的生存与攻击能力的有效方法,近年来成为广泛研究的热点[3, 4, 5]

新的电磁环境对吸波材料的“薄、轻、宽、强”提出了更高的要求。自1991年日本科学家Iijima通过石墨棒放电形成的阴极沉淀物进行电镜研究,首次发现了直径3~40nm,长度约为1μm的多层空心管状物——碳纳米管(Carbon Nanotubes,CNTs)后,对于碳纳米管的基础理论和应用研究方兴未艾[6]。碳纳米管具有特殊的电磁特性、优异的力学性能和稳定的物化性质,同时具有频带宽、质量轻、兼容性好等特点[7, 8, 9],是新一代最具发展潜力的吸波材料。本文结合国内外学者的研究情况,综述了碳纳米管吸波材料的最新研究进展,并提出了碳纳米管吸波材料研究中存在的问题以及今后的研究方向。

1 碳纳米管结构

碳纳米管可看成由石墨片层绕着中心轴按照一定的螺旋度卷曲而成的管状物,管壁由六边形排列的碳原子组成,每个碳与周围的三个碳原子相邻,C—C间通过sp2和sp3杂化键结合[10]。按其石墨的层数碳纳米管可以分为单壁碳纳米管(Single-Walled Carbon Nanotubes,SWCNTs)和多壁碳纳米管(Multi-Walled Carbon Nanotubes,MWCNTs),单壁碳纳米管可看成是由石墨平面卷曲而成,并在其两端罩上碳原子的封闭曲面。不同的卷曲方式,得到的单壁碳纳米管的结构也会不同。多壁碳纳米管则是由若干个单层管同心套叠成,它的层片间距约为0.34nm,比石墨的层片间距(0.335nm)稍大。其结构如图 1所示。

图 1 不同结构碳纳米管结构示意图及电镜照片扶手型(a),锯齿型(b),螺旋型(c)单壁碳纳米管结构示意图;(d)螺旋单壁碳纳米管隧道扫描电镜照片;(e)多壁碳纳米管隧道扫描透射电镜照片[11] Fig. 1 Schematic illustration and electron microscope images of the structures of carbon nanotubes armchair (a),zigzag (b),and chiral (c) SWCNTs schematic illustration;(d)tunneling electron microscope showing the helical structure of a chiral SWCNT;(e)transmission electron microscope image of a MWCNT[11]

碳纳米管自1991年发现以来,因其优良的力学性能[12, 13, 14, 15],导电性能[16, 17, 18, 19],导热性能[20, 21, 22, 23],光电性能[24, 25, 26, 27, 28, 29, 30, 31]和其他特殊性能,在传感器、增强复合材料、光学材料、场效应晶体管、场发射器等领域引起了研究者的广泛关注。同时碳纳米管具有独特的微结构和几何构形,由于小尺寸效应和高比表面积效应,具有较高的介电损耗角正切,依靠介质的电子极化或界面极化衰减吸收电磁波;而且由于量子限域效应,电子在碳纳米管中的运动是沿轴向的,碳纳米管表现出金属或半导体特性,有利于电磁波的衰减吸收[7]

2 碳纳米管的主要性能

碳纳米管作为一维纳米材料,质量轻,六边形结构连接完美,具有许多独特的力学、热学、光学和电学性能。

2.1 力学性能

由sp2杂化形成的CC共价键是自然界最强的化学键之一。全部由CC共价键构成的碳纳米管具有极高的轴向强度、韧性和弹性模量。实验测量结果表明,碳纳米管的弹性模量可达1TPa以上,与金刚石的弹性模量接近相同,约为钢的5倍[32]。碳纳米管的弹性应变最高可达12%,约为钢的60倍,而其密度仅为钢的1/6。碳纳米管无论是强度还是韧性,都远远优于任何纤维材料[33]。由于碳纳米管具有较大的长径比、较低的密度、较高的轴向强度和刚度,被看作是理想的复合材料增强相,可使复合材料的强度、弹性、抗疲劳性及各向同性得到显著提高。

2.2 热学性能

碳纳米管良好的热学性能主要表现在其比热容和热导率。碳纳米管的比热容与高度取向石墨相似,Yi等[34]通过实验发现从10~300K,碳纳米管的比热容与温度呈直线关系,这种线性关系与100K时计算得到的高度取向石墨一致,但比200~300K时计算值要低。碳纳米管还具有优良的热传导率,Berber等[35]通过平衡分子动力学模拟发现其热导率在室温可以达到6600W ·m-1 ·K-1,Che等[36]报道了单壁碳纳米管在室温时的热导率为2980W ·m-1 ·K-1,Xie等[19]研究发现碳纳米管的热传导率随着其在增强材料中含量的增加以及温度的升高而不断增强。由于优异的热传导率,碳纳米管同时又是一种优异的热传导增强复合材料。填充含量为1.0%(质量分数,下同)时,碳纳米管和炭纤维对环氧基复合材料进行热导率增强,热导率分别提高了125%和45%[37]。碳纳米管能形成高的热传导通路,传导通路越长,对热导率的增强也就越大,高的长径比可以提高其热传导通路,进而具有更大的热传导率[38]

2.3 光学性能

从分子特性来看,电磁波矢量在碳纳米管的环向被量子化,存在较多的范霍夫奇点,因此光学吸收峰多且强烈;固态碳纳米管的波矢量在其轴向连续,容易发生电子和声子散射,因此从理论角度来推测,碳纳米管的这两种特性必然造成其具有独特的光学性能。碳纳米管在激光辐照下会产生发光效应,具有光致发光效应;在吸收一定电能后可以发出可见光,具有电致发光特性。不同结构和表面状态的碳纳米管可以表现出不同的光学性能,并且在与稀土元素或有机物复合后,发光性能明显增强[39, 40]。2004年,清华大学韦进全等[41]提出碳纳米管电灯泡概念,他们发现,碳纳米管具有比黑体辐射更高的发光效率,碳纳米管电灯泡的发光可能具有冷光行为。同时,碳纳米管灯泡还表现出发光阈值电压低,在相同电压下具有更高的照度,特别是电阻随温度变化不明显等特点。

2.4 电学性能

碳纳米管的碳原子之间是sp2杂化,每个碳原子有一个未成对电子位于垂直于层片的π轨道上,因此碳纳米管与石墨一样具有优良的导电性能。Mintmire等[42]、Ebbesen等[43]的理论计算和实测结果表明,由于结构不同,碳纳米管可能是导体,也可能是半导体。碳纳米管的导电性能取决于石墨层片卷曲形成管状的直径和螺旋角,导电性介于导体和半导体之间。当碳纳米管的结构指数(n,m)满足m-n=3q(q为整数)时,碳纳米管呈金属性,不满足此条件的碳纳米管则呈半导体性。Dai等[44]发现碳纳米管的径向电阻大于轴向电阻,并且这种电阻的各向异性随着温度的降低而增大。Huang等[45]通过计算认为直径0.7nm的碳纳米管具有超导性,在低温时,碳纳米管超导的性质已经被观察到,1.4nm的单壁碳纳米管的超导临界温度约为0.55K,而在分子筛中生长的0.5nm的单壁碳纳米管,其超导临界温度为5K。Eom等[46]采用高能球磨法制备了碳纳米管-硅复合材料,球磨后硅被碳纳米管挤压在一起,同时界面处生成的SiC使得硅颗粒和碳纳米管具有更好的紧密接触。与Li组装后的Li/(SWCNT/Si)电池充放电效率和蓄电能力有很大提高。这主要是由于碳纳米管提供了柔韧的导电基体,在电池充放电过程中避免了电池材料的松散,同时球磨过程可以减小硅和碳纳米管的尺寸,进一步提高两者之间的电接触。

3 微波吸收性能

目前,国内外对碳纳米管吸波材料的研究主要集中在不同结构碳纳米管吸波材料、磁性金属/碳纳米管复合吸波材料、稀土/碳纳米管复合吸波材料、铁氧体/碳纳米管复合吸波材料、碳纳米管/聚合物复合吸波材料以及碳纳米管/陶瓷复合吸波材料。

3.1 不同结构碳纳米管吸波材料

碳纳米管按不同的结构形态可以分为单壁碳纳米管和多壁碳纳米管;原生碳纳米管和纯化碳纳米管;有缺陷碳纳米管和无缺陷碳纳米管;定向生长碳纳米管和团聚态碳纳米管。Micheli等[7]和Kim等[47]研究表明碳材料的结构形态对其电磁特性以及吸波效果具有重要的影响,单壁碳纳米管由于具有更小的管径和更大的长径比,相同含量下比多壁碳纳米管具有更大的导电性,多数研究者将其用于电磁屏蔽[48, 49, 50]

Paul等[51]研究发现有缺陷的碳纳米管比石墨化的碳纳米管导电性更好,碳纳米管的开口以及缺陷有利于电子的发射,缺陷可以作为低能态的电子通道,从而导致有缺陷的碳纳米管比石墨化的碳纳米管导电性更好。Hsu等[52, 53]制备了有较多晶格缺陷的碳纳米管、晶格完整的碳纳米管以及硼掺杂的碳纳米管,研究了缺陷对多壁碳纳米管介电常数的影响;测试了三种碳纳米管与聚苯乙烯在X波段(8~12GHz)的复介电常数,研究发现含有较多晶格缺陷的碳纳米管的复介电常数实部远大于其他两种碳纳米管,而硼掺杂碳纳米管的虚部最大。晶格缺陷可以起到极化中心的作用,从而提高碳纳米管复介电常数的实部,即提高了储存电磁场能量的能力。同时,掺杂硼后显著提高了碳纳米管自旋态密度,能隙宽度降到0.16meV,电子在外场中更易跃迁,从而提高了复介电常数的虚部,即损耗电磁波的能力。

张增富等[54]研究了单壁碳纳米管、聚团状多壁碳纳米管、阵列状多壁碳纳米管以及纯化与未纯化碳纳米管在2~18GHz的电磁特性,结果表明不同结构状态的碳纳米管对电磁波的损耗因子及衰减常数顺序为:阵列状多壁碳纳米管>原生聚团状多壁碳纳米管>纯化聚团状多壁碳纳米管>原生单壁碳纳米管>纯化单壁碳纳米管,以上表明多壁碳纳米管具有较好的吸收效果。

3.2 碳纳米管/磁性金属复合吸波材料

由于其特殊结构和介电性能,碳纳米管表现出较强的宽频带微波吸收性能,同时兼具质量轻、稳定性好等一系列优点,为了进一步对碳纳米管的吸波性能进行改善或调控,目前研究中的常用方法是利用磁性金属对碳纳米管进行包覆或者填充,经过碳管外磁性金属包覆或管内磁性材料的填充,可以利用磁损耗与电损耗多种机制来损耗电磁波能量。

Srivastava等[55]通过电化学沉积的方法在碳纳米管表面沉积了一层纳米镍粒子,将镍/碳纳米管分散于聚苯乙烯中,研究了镍/碳纳米管/聚苯乙烯在2~4GHz的电磁波吸收性能,Ni/MWCNTs质量分数分别为0.5%和1.5%,厚度为6mm和4mm时,反射率峰值分别达到-33dB和-24dB,可以作为一种轻质、柔韧且耐蚀的电磁波吸收材料。Sui等[56]采用热分解的方法在碳纳米管表面沉积了纳米Co粒子,由于磁损耗和介电损耗的同时存在以及Co和CNTs之间的界面极化作用,Co/CNTs相比单一的Co和CNTs具有更佳的吸波性能。Che等[57] 采用化学气相沉积法制备了管内填充单质Fe的碳纳米管,与环氧树脂复合并测试反射率。他们发现当填充的无定形铁转变为晶型α-Fe后,材料的反射率提高了2倍。通过测试晶型转化前后的复介电常数和复磁导率,他们认为α-Fe提高了碳纳米管的复磁导率虚部,由此导致复合材料吸波性能的增强。与Che等的研究成果相似,Zhu等[58, 59],Zhao等[60],Zou等[61],Lin等[62, 63],Yi等[64]将Fe,Ni,Co,Sn等填充在碳纳米管内,均得到了较好的吸波效果。另外还有研究者采用先对碳纳米管进行填充,然后表面再进行包覆或者混合,进一步对碳纳米管的吸波性能进行调节[65, 66]

3.3 碳纳米管/铁氧体复合吸波材料

Ghasemi[67]将多壁碳纳米管分散于BaFe10Mg0.5-Co0.5ZrO19的前驱体溶液中,通过溶胶-凝胶工艺制备了Mg-Co-Zr取代的钡铁氧体负载的多壁碳纳米管复合纳米粒子,并研究了不同碳纳米管含量时复合粒子的电磁特性。相比单一钡铁氧体和多壁碳纳米管,该复合粒子具有优异的吸波性能,在8~12GHz波段内具有两个吸收峰,反射率峰值随着碳纳米管含量的增加而降低,当碳纳米管体积分数在8%时具有最佳吸波效果,反射率在8~12GHz波段内小于-20dB。

Wang等[68]通过溶胶-凝胶法将SrFe12O19沉积在多壁碳纳米管管壁,研究了不同碳纳米管含量对SrFe12O19/MWCNTs复合材料的吸波性能的影响,碳纳米管质量分数在6%时,SrFe12O19/MWCNTs复合材料具有最佳的吸波效果。Zhao等[69]采用化学沉淀法制备了Fe3O4/MWCNTs复合材料,并测试了它在2~18GHz的电磁性能。由于Fe3O4粒子的作用,Fe3O4/MWCNTs复合材料不仅具有较大的介电损耗,同时具有磁损耗,3mm的Fe3O4/MWCNTs反射率达到-30dB以下。Zhan等[70]采用氯化铁分解的方法将纳米Fe3O4沉积在碳纳米管管壁上,制备了CNTs/Fe3O4复合吸波材料,由于CNTs与Fe3O4之间的界面作用和Fe3O4的磁损耗,CNTs/Fe3O4复合材料具有较大的介电损耗和磁损耗。Cao等[71]制备了Fe3O4/MWCNTs以及聚苯胺包覆的PANI/Fe3O4/MWCNTs,研究了Fe3O4和PANI的界面作用对复合材料电磁性能的影响。碳纳米管与异质结构之间的界面对复合材料的介电性能具有重要作用,影响其电磁波吸收以及吸收频带。

3.4 碳纳米管/稀土复合吸波材料

稀土材料由于4f壳层不满,具有特殊的电、光、磁性能[72],既有磁损耗,也有介电损耗。He等[73]研究发现稀土元素对碳纳米管进行修饰后会表现出特殊的电磁性能。碳纳米管是具有中空结构的一维材料,在多壁碳纳米管的内部填充稀土氧化物是调整碳纳米管电磁性能,优化其吸波效果的一个重要途径。

Zhang等[74]将Sm2O3填充在碳纳米管内,研究了Sm2O3填充对碳纳米管电磁参数和吸波性能的影响,结果发现:Sm2O3填充可以提高碳纳米管的磁损耗,电磁参数的变化可以改变其阻抗匹配,进一步影响其吸波性能。与未填充碳纳米管相比,Sm2O3填充的碳纳米管反射率峰值向高频移动,同时频带有所拓宽。Zhang等[75]还采用湿化学法制备了稀土氧化物Er2O3填充碳纳米管,Er2O3起到了与Sm2O3类似的作用,通过对碳纳米管电磁参数的改变从而影响其吸波性能,2mm的Er2O3填充碳纳米管与石蜡混合物的反射率峰值达到-27.96dB,小于-10dB的频带宽为2.30GHz。

3.5 碳纳米管/聚合物复合吸波材料

碳纳米管具有优良的导电性能,主要依靠电损耗实现对电磁波的吸收,碳纳米管的含量对吸波性能具有很大影响,过量的碳纳米管会引起吸波涂层电导率的提高,电磁波辐射到其表面会出现明显的趋肤效应,产生界面反射降低吸波性能,需要将其分散在其他基体材料中,目前研究的主要方向为碳纳米管/聚合物复合吸波材料。

Liu等[76]制备了单壁碳纳米管/聚亚安酯复合材料,研究了不同碳纳米管含量复合材料的吸波性能。碳纳米管质量分数为5%时,复合材料的吸波性能最佳,反射率峰值为-22dB。随碳纳米管含量增加,反射率吸收峰向低频移动。曹茂盛等[77]研究了不同质量分数碳纳米管/聚酯基复合材料的吸波性能。碳纳米管质量分数为8%时,碳纳米管/聚酯基复合材料在8~40GHz波段对电磁波有良好的吸收效果。厚度为1.40mm时,碳纳米管/聚酯基复合吸波材料的反射率峰值达到-8.14dB;厚度为5.50mm时,反射率峰值减小为-13dB。Park等[78]制备了多壁碳纳米管/聚氨酯复合材料,与混有炭黑的玻纤/环氧树脂复合材料做成夹心结构,测试了复合涂层在8~12GHz频率范围内吸波效果,最优反射率峰值可以达到-30dB。Thomassin等[79]制备了多壁碳纳米管/聚丙烯复合吸波材料,通过增溶剂的添加对碳纳米管在聚丙烯中的分散性进行改善,碳纳米管质量分数在2%时就具有较好的吸波效果.

3.6 碳纳米管/陶瓷复合吸波材料

碳纳米管/陶瓷复合吸波材料是吸波材料研究中的又一热点。由于陶瓷材料具有耐高温、耐腐蚀及抗氧化等特点,碳纳米管具有优异的电磁波吸收性能,因此,碳纳米管/陶瓷复合材料可望在高温吸波领域获得应用。

向长淑等[80]采用溶胶-凝胶法合成了碳纳米管/石英复合粉体,经热压烧结获得致密的复合材料,其复介电常数随着碳纳米管含量的增加而大幅度提高,大的介电常数虚部说明该复合材料具有很大的介电损耗,碳纳米管/石英复合材料在8.2~12.4GHz最大的反射损耗达到-8dB。刘学建等[81]利用反应烧结工艺制备了CNTs/Si3N4复合材料,该复合材料具有较好的微波吸收性能,可用作微波吸收材料。Cao等[82]将单晶结构ZnO包覆在MWCNTs表面,ZnO和MWCNTs形成一种电阻-电容网状结构形式,从而影响复合材料的介电性能和微波吸收性能,起到改善其吸收频带宽的作用。MWCNTs和SiO2构成的导电网络同样会对组成的复合材料MWCNTs/SiO2的导电性能和介电性能产生影响,MWCNTs质量分数在5%~10%和15%~20%时,出现两次渗透阈值[83]

Cao等[84, 85]采用烧结方法制备了MWCNTs/SiO2复合材料,研究了复合材料在X波段(8.2~12.4 GHz)不同温度下(30~600℃)的介电常数和微波吸收性能。MWCNTs/SiO2复合材料的介电常数实部和虚部随着温度的升高而逐渐增大,介电常数实部的增加是因为电子极化的弛豫时间随温度的升高而缩短,介电常数虚部的增加主要由于温度的升高导致复合体系的电导率增大,漏电损耗增强。图 2为温度对MWCNTs/SiO2介电常数实部和虚部的影响[84]。不同频率处材料的介电常数有所不同,同一温度下随着频率的增加介电常数值下降,具有频散现象。温度由373K增加到873K,频率为8.2GHz时,材料的复介电常数实部约由11.1增加到14.3,虚部由11.3增加到15.4;频率增加到12.2GHz时,复介电常数实部约由8.2增加到9.2,虚部由7.4增加到9.3。电磁波反射率计算结果显示,复合材料在研究的温度范围内都具有良好的电磁衰减能力,且该能力随温度的升高有减弱的趋势。

图 2 温度对MWCNTs/SiO2介电常数的影响 (a)介电实部;(b)介电虚部[84] Fig. 2 Complex permittivity of MWCNTs/SiO2 (a)the profile of dielectric constant vs temperature and frequency;(b)the profile of dielectric loss vs temperature and frequency[84]

本课题组利用Al2O3-TiO2陶瓷材料耐高温、抗氧化、耐腐蚀等优点,采用微弧等离子喷涂技术制备出以CNTs作为高温吸波剂,Al2O3-TiO2陶瓷材料作为黏结剂的高温复合吸波涂层[86, 87]。制备出的高温复合吸波涂层具有优异的高温吸波性能,300℃时复合涂层的反射率峰值减小为-12.88dB,小于-5dB频带宽增加到4.48GHz,500℃时复合涂层的反射率峰值为-15.63dB,随温度由25℃增加到500℃,复合涂层的高温吸波性能逐渐增强。同时由于陶瓷材料对碳纳米管高温氧化的防护,复合涂层的高温氧化性能也随之提高。

4 结束语

作为新一代最具发展潜力的吸波剂,碳纳米管已经受到了广泛的关注,在碳纳米管的制备、结构优化、复合改性等方面均取得了显著的进展,为了满足吸波材料在“厚度薄、密度小、吸收强、频段宽,耐高温”等方面的要求,碳纳米管吸波材料在以下方面有待进一步解决:

(1)碳纳米管的工业化及可控性生产。碳纳米管只有真正实现工业化和可控性生产,才能在吸波材料领域得到广泛的应用,目前碳纳米管在量化生产、生长机理探索、结构控制等方面还存在很大的探索空间。

(2)碳纳米管吸波材料的宽频化研究。新的电磁条件对吸波材料的吸收频带提出了更高的要求,碳纳米管作为电损耗型吸波材料,其吸波频带目前还无法满足吸波宽频化要求,进一步开展碳纳米管复合吸波材料研究,进行有效的复合、改性,调整碳纳米管复合材料的结构组成、形貌以及电磁参数,调控其阻抗匹配特性,对改善其吸波频带具有重要的意义。

(3)碳纳米管吸波材料的分散与结合性能研究。碳纳米管之间存在较强的范德华力作用,极易发生缠绕和团聚,与其他材料或基体的分散存在较大的困难,极大地影响了碳纳米管吸波材料的吸波性能和力学性能,采取有效的表面改性手段或者复合材料的合成工艺,改善碳纳米管的分散状态,提高碳纳米管在复合材料或基体中界面结合力,是碳纳米管工程化应用中急需解决的问题。

(4)碳纳米管吸波材料高温性能研究。碳纳米管是新一代最具发展潜力的高温吸波剂,但碳材料在氧化气氛中的氧化,严重影响其组织结构和电磁性能,对其应用带来了较大的困扰。采用改性手段、多层吸波涂层设计以及采用合适的涂层制备技术,有效降低其氧化,是碳纳米管吸波材料高温应用的重要发展方向。

参考文献(References)
[1] RIUS J M, TERRANDO M,JOFRE L. High-frequency RCS of complex radar target in real target in real time[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(9): 1308-1319.
[2] LIU R, LUN N, QI Y X, et al. Microwave absorption properties of TiN nanoparticles[J]. Journal of Alloys and Compounds, 2011, 509(41): 10032-10035.
[3] ZHEN L, GONG Y X, JIANG J T, et al. Synthesis of CoFe/Al2O3 composite nanoparticles as the impedance matching layer of wideband multilayer absorber[J]. Journal of Applied Physics, 2011, 109(7): 07A332.
[4] DENG L W, DING L, ZHOU K S, et al. Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(14): 1895-1898.
[5] WANG C, LV R, HUANG Z H, et al. Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites[J]. Journal of Alloys and Compounds, 2011, 509(2): 494-498.
[6] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
[7] MICHELI D, APOLLO C, PASTORE R, et al. X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science and Technology, 2010, 70(2): 400-409.
[8] LI N, HUANG Y, DU F, et al. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites[J]. Nano Letters, 2006, 6(6): 1141-1145.
[9] LARRY L, SAJJAD H, DARIO P, et al. Size and mobility of excitons in (6,5) carbon nanotubes[J]. Nature Physics, 2009, 5(1): 54-58.
[10] CHA H G, KUMAR S. Materials science-making strong fibers[J]. Science, 2008, 319 (5865): 908-909.
[11] YU M F, LOURIE O, DYER M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287(5453): 637-640.
[12] COLEMAN J N, KHAN U, GUN'KO Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials, 2006, 18(6): 689-706.
[13] AHMAD I, CAO H Z, CHEN H H, et al. Carbon nanotube toughened aluminium oxide nanocomposite[J]. Journal of the European Chemical Society, 2009, 30(4): 865-873.
[14] DENG F, ITO M, NOGUCHI T, et al. Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites[J]. ACS Nano, 2011, 5(5): 3858-3866.
[15] INAM F, YAN H X, JAYASEELAN D D, et al. Electrically conductive alumina-carbon nanocomposites prepared by spark plasma sintering[J]. Journal of the European Ceramic Society, 2010, 30(2): 153-157.
[16] ZHAN G D, KUNTZ J D, WAN J L, et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites[J]. Nature Materials, 2003, 2(1): 38-42.
[17] LIAO Y Z, ZHANG C, ZHANG Y, et al. Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors[J]. Nano Letters, 2011, 11(3): 954-959.
[18] AHMAD K, PAN W, SHI S L. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites[J]. Applied Physics Letters, 2006, 89(13): 133122.
[19] XIE H Q, CHEN L F. Review on the preparation and thermal performances of carbon nanotube contained nanofluids[J]. Journal of Chemical and Engineering Data, 2011, 56(4): 1030-1041.
[20] POP E, MANN D, WANG Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6(1): 96-100.
[21] CHOI T Y, POULIKAKOS D, THARIAN J, et al. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method[J]. Nano Letters, 2006, 6(8): 1589-1593.
[22] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physics Review Letters, 2001, 87 (21): 4-8.
[23] O'CONNELL M J, BACHILO S M, HUFFMAN C B, et al. Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science, 2002, 297(5581): 593-596.
[24] 徐志伟, 郭启微, 王晓生, 等. 电子束辐照对碳纳米管结构及性能的影响[J]. 材料工程, 2010, (12): 92-97. XU Zhi-wei, GUO Qi-wei, WANG Xiao-sheng, et al. Effect of electron-beam irradiation on structure and properties of CNTs[J]. Journal of Materials Engineering, 2010, (12): 92-97.
[25] MISEWICH J A, MARTEL R, AVOURIS P, et al. Electrically induced optical EMISSION from a carbon nanotube FET[J]. Science, 2003, 300(5620): 783-786.
[26] WANG Q H, CORRIGAN T D, DAI J Y, et al. Field emission from nanotube bundle emitters at low fields[J]. Applied Physics Letters, 1997, 70(24): 3308-3310.
[27] YUGE R, MIYAWAKI J, ICHIHASHI T, et al. Highly efficient field emission from carbon nanotube-nanohorn hybrids prepared by chemical vapor deposition[J]. ACS Nano, 2010, 4(12): 7337-7343.
[28] GARRETT D J, BROOKSBY P A, RAWSON F J, et al. Reproducible fabrication of robust, renewable vertically aligned multiwalled carbon nanotube/epoxy composite electrodes[J]. Analytical Chemistry, 2011, 83(21):8347-8351.
[29] BINDL D J, WU M Y, PREHN F C, et al. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films[J]. Nano Letters, 2011, 11(2): 455-460.
[30] ST-ANTOINE B C, MÉNARD D, MARTEL R. Single-walled carbon nanotube thermopile for broadband light detection[J]. Nano Letters, 2011, 11(2): 609-613.
[31] ODOM T W, HUANG J L, KIM P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature, 1998, 319: 62-64.
[32] LU J P. Elastic properties of carbon nanotubes and nanoropes[J]. Physics Review Letters, 1997, 79(7): 1297-1300.
[33] ZHOU O, FLEMING R M, MURPHY D W, et a1. Defects in carbon nano-structures[J]. Science, 1994, 263(5154): 1744-1747.
[34] YI W, LU L, ZHANG D L, et al. Linear specific hear of carbon nanotubes[J]. Physical Review B, 1999, 59: R9015-R9018.
[35] BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physics Review Letters, 2000, 84(20): 4613-4616.
[36] CHE J, CAGIN T, GODDARD W A. Thermal conductivity of carbon nanotubes[J]. Nanotechnology, 2000, 11: 65-69.
[37] BIERCUK M J, LLAGUNO M C, RADOSAVLJEVIC M, et al. Carbon nanotube composites for thermal management[J]. Applied Physics Letters, 2002, 80(15): 2767-2769.
[38] JIANG W T, DING G L, PENG H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants[J]. International Journal of Thermal Sciences, 2009, 48(6): 1108-1115.
[39] BACHILO S M, STRANO M S, KITTRELL C, et al. Structure-assigned optical spectra of single-walled carbon nanotubes[J]. Science, 2002, 298(5602): 2361-2366.
[40] SUN W X, HUANG Z P, ZHANG L, et al. Luminescence from multi-walled carbon nanotubes and the Eu(Ⅲ)/multi-walled carbon nanotube composite[J]. Carbon, 2003, 41(8): 1685-1687.
[41] WEI J Q, ZHU H W, WU D H, et al. Carbon nanotubes filaments in household light bulbs[J]. Applied Physics Letters, 2004, 84(24): 4869-4871.
[42] MINTMIRE J W, DUNLAP B I, WHITE C T. Are fullerene tubules metallic[J]. Physical Review Letters, 1992, 68(5): 631-634.
[43] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586): 54-56.
[44] DAI H J, WONG E W, LIEBER C M. Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes[J]. Science, 1996, 272(526): 523-526.
[45] HUANG Y, OKADA M, TANAKA K, et a1. Estimation of superconducting transition temperature in metallic carbon nanotubes[J]. Physics Review B, 1996, 53(9): 5129.
[46] EOM J Y, KWON H S. Preparation of single-walled carbon nanotube/silicon composites and their lithium storage properties[J]. ACS Applied Materials & Interfaces, 2011, 3(4):1015-1021.
[47] KIM J B, LEE S K, KIM C G. Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band[J]. Composites Science and Technology, 2008, 68(14): 2909-2916.
[48] YANG Y L, MOOL C G, KENNETH D L, et al. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding[J]. Nano Letters, 2005, 5(11): 2131-2134.
[49] HUANG Y, LI N, MA Y F, et al. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites[J]. Carbon, 2007, 45(8): 1614-1621.
[50] LIU Z F, BAI G, HUANG Y, et al. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites[J]. Carbon, 2007, 45(4): 821-827.
[51] WATTS P C P, WEN K H, HAROLD W K, et al. Are bulk defective carbon nanotubes less electrically conducting?[J]. Nano Letters, 2003, 3(4): 549-553.
[52] WATTS P C P, HSU W K, BARNES A, et al. High permittivity from defective multiwalled carbon nanotubes in the X-band[J]. Advanced Materials, 2003, 15(7-8): 600-603.
[53] HSU W K, NAKALIMA T. Electrically conducting boron-doped multi-walled carbon nanotube bundles[J]. Carbon, 2002, 40(3): 462-464.
[54] 张增富,罗国华,范壮军,等.不同结构碳纳米管的电磁波吸收性能研究[J].物理化学学报,2006, 22(3): 296-300. ZHANG Zeng-fu, LUO Guo-hua, FAN Zhuang-jun, et al. Complex permittivity and permeability spectra of different kinds of carbon nanotubes[J]. Acta Physico-Chimica Sinica, 2006, 22(3): 296-300.
[55] SRIVASTAVA R K, NARAYANAN T N, MARY A P, et al. Ni filled flexible multi-walled carbon nanotube-polystyrene composite films as efficient microwave absorbers[J]. Applied Physics Letters, 2011, 99(11): 113116.
[56] SUI J H, ZHANG C, LI J, et al. Microwave absorption and catalytic activity of carbon nanotubes decorated with cobalt nanoparticles[J]. Materials Letters, 2012, 75(5): 158-160.
[57] CHE R C, PENG L M, DUAN X F. Microwave absorption enhancement and complex permittivity permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials, 2004, 16(5): 401-405.
[58] ZHU H, LIN H Y, GUO H F, et al. Microwave absorbing property of Fe-filled carbon nanotubes synthesized by a practical route[J]. Materials Science and Engineering: B, 2007, 138(1): 101-104.
[59] ZHU H, ZHANG L, ZHANG L Z, et al. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing[J]. Materials Letters, 2010, 64(3): 227-230.
[60] ZHAO D L, LI X, SHEN Z M. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes[J]. Journal of Alloys and Compounds, 2009, 471(1-2): 457-460.
[61] ZOU T C, LI H P, ZHAO N Q, et al. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire[J]. Journal of Alloys and Compounds, 2010, 496(1-2): L22-L24.
[62] LIN H Y, ZHU H, GUO H F, et al. Microwave-absorbing properties of Co-filled carbon nanotubes[J]. Materials Research Bulletin, 2008, 43(10): 2697-2702.
[63] LIN H Y, ZHU H, GUO H F, et al. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes[J]. Materials Letters, 2007, 61(16): 3547-3550.
[64] YI H B, WEN F S, QIAO L, et al. Microwave electromagnetic properties of multiwalled carbon nanotubes filled with Co nanoparticles[J].Journal of Applied Physics, 2009, 106(10): 103922.
[65] GUI X C, YE W, WEI J Q, et al. Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption[J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075002.
[66] WANG C, RUITAO L, KANG F Y, et al. Synthesis and application of iron-filled carbon nanotubes coated with FeCo alloy nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(13): 1924-1927.
[67] GHASEMI A. Enhanced reflection loss and permittivity of self assembled Mg-Co-Zr substituted barium ferrite dot array on carbon nanotubes[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(6): 1080-1083.
[68] WANG W T, LI Q L, CHANG C B. Effect of MWCNTs content on the magnetic and wave absorbing properties of ferrite-MWCNTs composites[J]. Synthetic Metals, 2011, 161(1-2): 44-50.
[69] ZHAO C Y, ZHANG A B, ZHENG Y P, et al. Electromagnetic and microwave-absorbing properties of magnetite decorated multiwalled carbon nanotubes prepared with poly(N-vinyl-2-pyrrolidone)[J]. Materials Research Bulletin, 2012, 47(2): 217-221.
[70] ZHAN Y Q, ZHAO R, LEI Y J, et al. Preparation, characterization and electromagnetic properties of carbon nanotubes/Fe3O4 inorganic hybrid material[J]. Applied Surface Science, 2011, 257(9): 4524-4528.
[71] CAO M S, YANG J, SONG W L,et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwa ve absorption[J].ACS Applied Materials Interfaces, 2012, 4(12): 6949-6956.
[72] KUANG Q, LIN Z W, LIAN W, et al. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide temp1ates[J]. Journal of Solid State Chemistry,2007, 180(4): 1236-1242.
[73] HE B J, SUN W L, WANG M, et al. New magnetic phenomena of rare earth ions-modified carbon nanotubes[J]. Materials Chemistry and Physics, 2006, 9(2-3): 202-205.
[74] ZHANG L, ZHU H. Dielectric, magnetic, and microwave absorbing properties of multi-walled carbon nanotubes filled with Sm2O3 nanoparticles[J]. Materials Letters, 2009, 63(2): 272-274.
[75] ZHANG L, ZHU H, SONG Y, et al. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers[J]. Materials Science and Engineering: B, 2008, 153(1-3): 78-82.
[76] LIU Z F, BAI G, HUANG Y, et al. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites[J]. Journal of Physical Chemistry C, 2007, 111(37): 13696-13700.
[77] 曹茂盛, 高正娟, 朱静. CNTs/Polyester复合材料的微波吸收特性研究[J]. 材料工程, 2003, (2): 34-36. CAO Mao-sheng, GAO Zheng-juan, ZHU Jing. Research on microwave absorbability towards CNTs/polyester composites[J]. Journal of Materials Engineering, 2003, (2): 34-36.
[78] PARK K Y, LEE S E,KIM C G, et al.Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures[J]. Composites Science and Technology, 2006, 66(3-4): 576-584.
[79] THOMASSIN J M, HUYNEN I, ROBERT J, et al. Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials[J]. Polymer, 2010, 51(1): 115-121.
[80] 向长淑, 杨炯, 朱勇, 等. 碳纳米管/石英复合材料的电磁波吸收性能[J]. 无机材料学报, 2007, 22(1): 101-105. XIANG Chang-shu, YANG Jiong, ZHU Yong, et al. Electromagnetic wave absorbing properties of carbon nanotube-fused silica composites[J]. Journal of Inorganic Materials, 2007, 22(1): 101-105.
[81] 刘学建, 黄智勇, 向长淑, 等. 反应烧结工艺制备碳纳米管/氮化硅陶瓷基复合材料[J]. 硅酸盐学报, 2006, 34(2): 133-136. LIU Xue-jian, HUANG Zhi-yong, XIANG Chang-shu, et al. Carbon nanotubes/silicon nitride ceramic matric composites fabricated by reaction-bonded process[J]. Journal of the Chinese Ceramic Society, 2006, 34(2): 133-136.
[82] SONG W L, CAO M S, WEN B, et al. Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: dielectric properties, electromagnetic interference shielding and microwave absorption[J]. Materials Research Bulletin, 2012, 47(7): 1747-1754.
[83] LU M M, YUAN J, WEN B, et al. Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism[J]. Chinese Physics B, 2013, 22(3): 037701.
[84] SONG W L, CAO M S, HOU Z L, et al. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873K in X-band[J]. Applied Physics Letters, 2009, 94(23): 233110.
[85] SONG W L, CAO M S, HOU Z L, et al. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite[J]. Scripta Materialia, 2009, 61(2): 201-204.
[86] 华绍春, 王汉功, 汪刘应, 等. 微弧等离子喷涂碳纳米管/纳米Al2O3-TiO2复合涂层的吸波性能研究[J]. 物理学报, 2009, 58(9): 6534-6541. HUA Shao-chun, WANG Han-gong, WANG Liu-ying, et al. Absorption properties of micro-plasma sprayed carbon nanotube-nanostructure A12O3-TiO2 composite coatings[J]. Acta Physica Sinica, 2009, 58(9): 6534-6541.
[87] 汪刘应,徐卓,华绍春, 等. 微弧等离子喷涂碳纳米管/纳米Al2O3-TiO2复合涂层高温性能研究[J]. 无机材料学报, 2011, 26(3): 239-243. WANG Liu-ying, XU Zhuo, HUA Shao-chun, et al. High temperature performance of micro-plasma sprayed CNTs/A12O3-TiO2 composite coating[J]. Journal of Inorganic Materials, 2011, 26(3): 239-243.