[1] |
WANG Y C, LIU Y, LIU W, et al. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction[J]. Energy & Environmental Science, 2020, 13(12): 4609-4624. |
|
[2] |
WANG L M, CHEN W L, ZHANG D D, et al. Surface strategies for catalytic CO 2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 48(21): 5310-5349. DOI:10.1039/C9CS00163H |
|
[3] |
ZHANG S, FAN Q, XIA R, et al. CO 2 reduction: from homogeneous to heterogeneous electrocatalysis[J]. Accounts of Chemical Research, 2020, 53(1): 255-264. DOI:10.1021/acs.accounts.9b00496 |
|
[4] |
CHANG C J, LIN S C, CHEN H C, et al. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO 2 reduction toward methane[J]. Journal of the American Chemical Society, 2020, 142(28): 12119-12132. DOI:10.1021/jacs.0c01859 |
|
[5] |
XIE J F, ZHAO X T, WU M X, et al. Metal-free fluorine-doped carbon electrocatalyst for CO 2 reduction outcompeting hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57(31): 9640-9644. DOI:10.1002/anie.201802055 |
|
[6] |
WANG X, WANG Z Y, ARQUER F P G, et al. Efficient electrically powered CO 2-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020, 5(6): 478-486. DOI:10.1038/s41560-020-0607-8 |
|
[7] |
CHOI C, KWON S, CHENG T, et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO 2 reduction to C 2H 4[J]. Nature Catalysis, 2020, 3(10): 804-812. DOI:10.1038/s41929-020-00504-x |
|
[8] |
MEI J, LIAO T, KOU L Z, et al. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries[J]. Advanced Materials, 2017, 29(48): 1700176. DOI:10.1002/adma.201700176 |
|
[9] |
LIU J L, GUO C X, VASILEFF A, et al. Nanostructured 2D materials: prospective catalysts for electrochemical CO2 reduction[J]. Small Methods, 2017, 1(2): 1600006. |
|
[10] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896 |
|
[11] |
XIONG P, WU Y Y, LIU Y F, et al. Two-dimensional organic-inorganic superlattice-like heterostructures for energy storage applications[J]. Energy & Environmental Science, 2020, 13(12): 4834-4853. |
|
[12] |
DENG P M, NING H L, XIE W G, et al. Research progress in stannous oxide thin film transistors[J]. Journal of Materials Engineering, 2020, 48(4): 83-88. |
|
[13] |
ZENGJ, XU L, LUO X, et al. A novel design of SiH/CeO 2(111) van der Waals type-Ⅱ heterojunction for water splitting[J]. Physical Chemistry Chemical Physics, 2021, 23(4): 2812-2818. DOI:10.1039/D0CP05238H |
|
[14] |
ZHOU Y S, CHE F L, LIU M, et al. Dopant-induced electron localization drives CO 2 reduction to C 2 hydrocarbons[J]. Nature Chemistry, 2018, 10(9): 974-980. DOI:10.1038/s41557-018-0092-x |
|
[15] |
PANG Y J, LI J, WANG Z Y, et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper[J]. Nature Catalysis, 2019, 2(3): 251-258. DOI:10.1038/s41929-019-0225-7 |
|
[16] |
WANG Y C, LIU B, LIU Y, et al. Accelerating charge transfer to enhance H 2 evolution of defect-rich CoFe 2O 4 by constructing a Schottky junction[J]. Chemical Communications, 2020, 56(90): 14019-14022. DOI:10.1039/D0CC05656A |
|
[17] |
YAN J Q, KONG L Q, JI Y J, et al. Single atom tungsten doped ultrathin α-Ni(OH) 2 for enhanced electrocatalytic water oxidation[J]. Nature Communications, 2019, 10: 2149. DOI:10.1038/s41467-019-09845-z |
|
[18] |
ZHAO Y, TAN X, YANG W F, et al. Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO 2 reduction[J]. Angewandte Chemie International Edition, 2020, 59(48): 21493-21498. DOI:10.1002/anie.202009616 |
|
[19] |
南文争, 燕绍九, 彭思侃, 等. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115. NAN W Z, YAN S J, PENG S K, et al. Preparation of graphene based on liquid phase exfoliation and its application on LiFePO 4 electrode for lithium ion battery[J]. Journal of Materials Engineering, 2020, 48(11): 108-115. |
|
[20] |
JEONG G H, SASIKALA S P, YUN T, et al. Nanoscale assembly of 2D materials for energy and environmental applications[J]. Advanced Materials, 2020, 32(35): 1907006. DOI:10.1002/adma.201907006 |
|
[21] |
WANG Q C, LEI Y P, WANG Y C, et al. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis[J]. Energy & Environmental Science, 2020, 13(6): 1593-1616. |
|
[22] |
WU Q M, DENG D K, HE Y L, et al. Fe/N-doped mesoporous carbons derived from soybeans: a highly efficient and low-cost non-precious metal catalyst for ORR[J]. Journal of Central South University, 2020, 27(2): 344-355. DOI:10.1007/s11771-020-4300-7 |
|
[23] |
ZHAO C M, LUO G, LIU X K, et al. In situ topotactic transformation of an interstitial alloy for CO electroreduction[J]. Advanced Materials, 2020, 32(39): 2002382. DOI:10.1002/adma.202002382 |
|
[24] |
LI X D, WANG S M, LI L, et al. Opportunity of atomically thin two-dimensional catalysts for promoting CO 2 electroreduction[J]. Accounts of Chemical Research, 2020, 53(12): 2964-2974. DOI:10.1021/acs.accounts.0c00626 |
|
[25] |
SUN Z Y, MA T, TAO H C, et al. Fundamentals and challenges of electrochemical CO 2 reduction using two-dimensional materials[J]. Chem, 2017, 3(4): 560-587. DOI:10.1016/j.chempr.2017.09.009 |
|
[26] |
SHI R, GUO J H, ZHANG X R, et al. Efficient wettability-controlled electroreduction of CO 2 to CO at Au/C interfaces[J]. Nature Communications, 2020, 11(1): 3028. DOI:10.1038/s41467-020-16847-9 |
|
[27] |
CHENG H, LIU S, ZHANG J D, et al. Surface nitrogen-injection engineering for high formation rate of CO 2 reduction to formate[J]. Nano Letters, 2020, 20(8): 6097-6103. DOI:10.1021/acs.nanolett.0c02144 |
|
[28] |
CHEN Z P, MOU K W, WANG X H, et al. Nitrogen-doped graphene quantum dots enhance the activity of Bi 2O 3 nanosheets for electrochemical reduction of CO 2 in a wide negative potential region[J]. Angewandte Chemie International Edition, 2018, 57(39): 12790-12794. DOI:10.1002/anie.201807643 |
|
[29] |
ZHANG W J, HU Y, MA L B, et al. Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO 2 reduction on two-dimensional metal nanostructure[J]. Nano Energy, 2018, 53: 808-816. DOI:10.1016/j.nanoen.2018.09.053 |
|
[30] |
KIM S, DONG W J, GIM S, et al. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate[J]. Nano Energy, 2017, 39: 44-52. DOI:10.1016/j.nanoen.2017.05.065 |
|
[31] |
HAN N, WANG Y, YANG H, et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO 2 reduction to formate[J]. Nature Communications, 2018, 9: 1320. DOI:10.1038/s41467-018-03712-z |
|
[32] |
ARQUER F P G, BUSHUYEV O S, LUNA P D, et al. 2D metal oxyhalide-derived catalysts for efficient CO 2 electroreduction[J]. Advanced Material, 2018, 30(38): 1802858. DOI:10.1002/adma.201802858 |
|
[33] |
YANG F, ELNABAWY A O, SCHIMMENTI R, et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction[J]. Nature Communications, 2020, 11(1): 1088. DOI:10.1038/s41467-020-14914-9 |
|
[34] |
CAO C S, MA D D, GU J F, et al. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J]. Angewandte Chemie International Edition, 2020, 59(35): 15014-15020. DOI:10.1002/anie.202005577 |
|
[35] |
CHEN H L, CHEN J X, SI J C, et al. Ultrathin tin monosulfide nanosheets with exposed (001) plane for efficient electrocatalytic conversion of CO 2 into formate[J]. Chemical Science, 2020, 11(15): 3952-3958. DOI:10.1039/C9SC06548B |
|
[36] |
YUAN T B, HU Z, ZHAO Y X, et al. Two-dimensional amorphous SnO x from liquid metal: mass production, phase transfer, and electrocatalytic CO 2 reduction toward formic acid[J]. Nano Letters, 2020, 20(4): 2916-2922. DOI:10.1021/acs.nanolett.0c00844 |
|
[37] |
HAN N, WANG Y Y, DENG J, et al. Self-templated synthesis of hierarchical mesoporous SnO 2 nanosheets for selective CO 2 reduction[J]. Journal of Materials Chemistry A, 2019, 7(3): 1267-1272. DOI:10.1039/C8TA10959A |
|
[38] |
ZHANG A, HE R, LI H P, et al. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO 2 reduction[J]. Angewandte Chemie International Edition, 2018, 57(34): 10954-10958. DOI:10.1002/anie.201806043 |
|
[39] |
LI F W, CHEN L, XUE M Q, et al. Towards a better Sn: efficient electrocatalytic reduction of CO 2 to formate by Sn/SnS 2 derived from SnS 2 nanosheets[J]. Nano Energy, 2017, 31: 270-277. DOI:10.1016/j.nanoen.2016.11.004 |
|
[40] |
LEI F C, LIU W, SUN Y F, et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction[J]. Nature Communications, 2016, 7: 12697. DOI:10.1038/ncomms12697 |
|
[41] |
ZU X L, LI X D, LIU W, et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Sn δ+ sites[J]. Advanced Materials, 2019, 31(15): 1808135. DOI:10.1002/adma.201808135 |
|
[42] |
LI F W, XUE M Q, LI J Z, et al. Unlocking the electrocatalytic activity of antimony for CO 2 reduction by two-dimensional engineering of the bulk material[J]. Angewandte Chemie International Edition, 2017, 56(46): 14718-14722. DOI:10.1002/anie.201710038 |
|
[43] |
GAO S, JIAO X C, SUN Z T, et al. Ultrathin Co 3O 4 layers realizing optimized CO 2 electroreduction to formate[J]. Angewandte Chemie International Edition, 2016, 55(2): 698-702. DOI:10.1002/anie.201509800 |
|
[44] |
GAO S, LIN Y, JIAO X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71. DOI:10.1038/nature16455 |
|
[45] |
GAO S, SUN Z T, LIU W, et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction[J]. Nature Communications, 2017, 8: 14503. DOI:10.1038/ncomms14503 |
|
[46] |
ZHANG W Y, QIN Q, DAI L, et al. Electrochemical reduction of CO 2 to CH 3OH on hierarchical Pd/SnO 2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018, 57(30): 9475-9479. DOI:10.1002/anie.201804142 |
|
[47] |
JI L, CHANG L, ZHANG Y, et al. Electrocatalytic CO 2 reduction to alcohols with high selectivity over a two-dimensional Fe 2P 2S 6 nanosheet[J]. ACS Catalysis, 2019, 9(11): 9721-9725. DOI:10.1021/acscatal.9b03180 |
|
[48] |
LUC W, FU X B, SHI J J, et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate[J]. Nature Catalysis, 2019, 2(5): 423-430. DOI:10.1038/s41929-019-0269-8 |
|
[49] |
MA W C, XIE S J, LIU T T, et al. Electrocatalytic reduction of CO 2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper[J]. Nature Catalysis, 2020, 3(6): 478-487. DOI:10.1038/s41929-020-0450-0 |
|
[50] |
GONG Q F, DING P, XU M Q, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10: 2807. DOI:10.1038/s41467-019-10819-4 |
|
[51] |
LIU Y, FENG Q G, LIU W, et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification[J]. Nano Energy, 2021, 81: 105641. DOI:10.1016/j.nanoen.2020.105641 |
|
[52] |
REN D, GAO J, PAN L F, et al. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J]. Angewandte Chemie International Edition, 2019, 58(42): 15036-15040. DOI:10.1002/anie.201909610 |
|
[53] |
YANG D X, ZHU Q G, CHEN C J, et al. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts[J]. Nature Communications, 2019, 10: 677. DOI:10.1038/s41467-019-08653-9 |
|
[54] |
XIE J F, WANG X Y, LV J Q, et al. Reversible aqueous zinc-CO 2 batteries based on CO 2-HCOOH interconversion[J]. Angewandte Chemie International Edition, 2018, 57(52): 16996-17001. DOI:10.1002/anie.201811853 |
|
[55] |
GENOVESE C, SCHUSTER M E, GIBSON E K, et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon[J]. Nature Communications, 2018, 9: 935. DOI:10.1038/s41467-018-03138-7 |
|
[56] |
WANG H X, TZENG Y K, JI Y F, et al. Synergistic enhancement of electrocatalytic CO 2 reduction to C 2 oxygenates at nitrogen-doped nanodiamonds/Cu interface[J]. Nature Nanotechnology, 2020, 15(2): 131-137. DOI:10.1038/s41565-019-0603-y |
|