[1] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. DOI:10.1002/adem.200300567 |
|
[2] | |
|
[3] | |
|
[4] |
王峰, 郑欣, 张小明, 等. MoNbZr高熵合金微观组织的研究[J]. 热加工工艺, 2012, 41(24): 117-120. WANG F, ZHENG X, ZHANG X M, et al. Study on microstructure of multielement MoNbZr high entropy alloy[J]. Hot Working Technology, 2012, 41(24): 117-120. |
|
[5] |
谭雅琴, 王晓明, 朱胜, 等. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 120-126. TAN Y Q, WANG X M, ZHU S, et al. Research progress on strengthening and ductilizing high-entropy alloys[J]. Materials Reports, 2020, 34(5): 120-126. |
|
[6] |
陈永星, 朱胜, 王晓明, 等. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45(11): 129-138. CHEN Y X, ZHU S, WANG X M, et al. Research progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engineering, 2017, 45(11): 129-138. DOI:10.11868/j.issn.1001-4381.2015.001124 |
|
[7] |
LI R, NIU P, YUAN T, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property[J]. Journal of Alloys and Compounds, 2018, 746: 125-134. DOI:10.1016/j.jallcom.2018.02.298 |
|
[8] |
XIANG S, LUAN H, WU J, et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique[J]. Journal of Alloys and Compounds, 2019, 773: 387-392. DOI:10.1016/j.jallcom.2018.09.235 |
|
[9] |
CHEW Y, BI G J, ZHU Z G, et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy[J]. Materials Science and Engineering: A, 2019, 744: 137-144. DOI:10.1016/j.msea.2018.12.005 |
|
[10] | |
|
[11] |
QIU Z, YAO C, FENG K, et al. Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(1): 33-39. DOI:10.1016/j.ijlmm.2018.02.001 |
|
[12] |
ZHANG M, ZHOU X, WANG D, et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment[J]. Materials Science and Engineering: A, 2019, 743: 773-784. DOI:10.1016/j.msea.2018.11.118 |
|
[13] |
CHEN P, LI S, ZHOU Y, et al. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying[J]. Journal of Materials Science and Technology, 2020, 43: 40-43. DOI:10.1016/j.jmst.2020.01.002 |
|
[14] |
JOSEPH J, JARVIS T, WU X, et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al xCoCrFeNi high entropy alloys[J]. Materials Science and Engineering: A, 2015, 633: 184-193. DOI:10.1016/j.msea.2015.02.072 |
|
[15] |
VIKRAM R J, MURTY B S, FABIJANIC D, et al. Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi 2.1[J]. Journal of Alloys and Compounds, 2020, 827: 154034. DOI:10.1016/j.jallcom.2020.154034 |
|
[16] |
GALATI M, IULIANO L. A literature review of powder-based electron beam melting focusing on numerical simulations[J]. Additive Manufacturing, 2018, 19: 1-20. DOI:10.1016/j.addma.2017.11.001 |
|
[17] | |
|
[18] |
SUN Z, TAN X P, DESCOINS M, et al. Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting[J]. Scripta Materialia, 2019, 168: 129-133. DOI:10.1016/j.scriptamat.2019.04.036 |
|
[19] |
LIN D, XU L, JING H, et al. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting[J]. Additive Manufacturing, 2020, 32: 101058. DOI:10.1016/j.addma.2020.101058 |
|
[20] |
KENEL C, CASATI N P M, DUNAND D C. 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices[J]. Nature Communications, 2019, 10(1): 1-8. DOI:10.1038/s41467-018-07882-8 |
|
[21] |
ZHOU R, LIU Y, ZHOU C, et al. Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting[J]. Intermetallics, 2018, 94: 165-171. DOI:10.1016/j.intermet.2018.01.002 |
|
[22] |
WU W, ZHOU R, WEI B, et al. Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting[J]. Materials Characterization, 2018, 144: 605-610. DOI:10.1016/j.matchar.2018.08.019 |
|
[23] |
ZHOU R, LIU Y, LIU B, et al. Precipitation behavior of selective laser melted FeCoCrNiC 0.05 high entropy alloy[J]. Intermetallics, 2019, 106: 20-25. DOI:10.1016/j.intermet.2018.12.001 |
|
[24] |
SONG M, ZHOU R, GU J, et al. Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy[J]. Applied Materials Today, 2020, 18: 100498. DOI:10.1016/j.apmt.2019.100498 |
|
[25] |
LIN D, XU L, LI X, et al. A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting[J]. Additive Manufacturing, 2020, 35: 101340. DOI:10.1016/j.addma.2020.101340 |
|
[26] | |
|
[27] |
WANG Q, AMAR A, JIANG C, et al. CoCrFeNiMo 0.2 high entropy alloy by laser melting deposition: prospective material for low temperature and corrosion resistant applications[J]. Intermetallics, 2020, 119: 106727. DOI:10.1016/j.intermet.2020.106727 |
|
[28] |
ZHOU K, WANG Z, HE F, et al. A precipitation-strengthened high-entropy alloy for additive manufacturing[J]. Additive Manufacturing, 2020, 35: 101410. DOI:10.1016/j.addma.2020.101410 |
|
[29] |
KIM J, WAKAI A, MORIDI A. Materials and manufacturing renaissance: additive manufacturing of high-entropy alloys[J]. Journal of Materials Research, 2020, 35(15): 1963-1983. DOI:10.1557/jmr.2020.140 |
|
[30] |
ZHU Z G, NGUYEN Q B, NG F L, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 2018, 154: 20-24. DOI:10.1016/j.scriptamat.2018.05.015 |
|
[31] |
TONG Z, REN X, JIAO J, et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: effect of heat treatment on microstructure, residual stress and mechanical property[J]. Journal of Alloys and Compounds, 2019, 785: 1144-1159. DOI:10.1016/j.jallcom.2019.01.213 |
|
[32] |
GUAN S, WAN D, SOLBERG K, et al. Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping[J]. Materials Science and Engineering: A, 2019, 761: 138056. DOI:10.1016/j.msea.2019.138056 |
|
[33] | |
|
[34] |
XU Z, ZHANG H, LI W, et al. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting[J]. Additive Manufacturing, 2019, 28: 766-771. DOI:10.1016/j.addma.2019.06.012 |
|
[35] |
KIM Y K, YANG S, LEE K A. Superior temperature-dependent mechanical properties and deformation behavior of equiatomic CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Scientific Reports, 2020, 10(1): 1-13. DOI:10.1038/s41598-019-56847-4 |
|
[36] |
ZHANG C, FENG K, KOKAWA H, et al. Cracking mechanism and mechanical properties of selective laser melted CoCrFeMnNi high entropy alloy using different scanning strategies[J]. Materials Science and Engineering: A, 2020, 789: 139672. DOI:10.1016/j.msea.2020.139672 |
|
[37] |
AMAR A, LI J, XIANG S, et al. Additive manufacturing of high-strength CrMnFeCoNi-based high entropy alloys with TiC addition[J]. Intermetallics, 2019, 109: 162-166. DOI:10.1016/j.intermet.2019.04.005 |
|
[38] |
LI J, XIANG S, LUAN H, et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition[J]. Journal of Materials Science and Technology, 2019, 35(11): 2430-2434. DOI:10.1016/j.jmst.2019.05.062 |
|
[39] |
LI B, ZHANG L, XU Y, et al. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: process, particle behavior and effects[J]. Powder Technology, 2020, 360: 509-521. DOI:10.1016/j.powtec.2019.10.068 |
|
[40] |
LI B, ZHANG L, YANG B. Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting[J]. Composites Communications, 2020, 19: 56-60. DOI:10.1016/j.coco.2020.03.001 |
|
[41] |
SAVINOV R, WANG Y, SHI J. Microstructure and properties of CeO 2-doped CoCrFeMnNi high entropy alloy fabricated by laser metal deposition[J]. Journal of Manufacturing Processes, 2020, 56: 1245-1251. DOI:10.1016/j.jmapro.2020.04.018 |
|
[42] |
GAO X, YU Z, HU W, et al. In situ strengthening of CrMnFeCoNi high-entropy alloy with Al realized by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2020, 847: 156563. DOI:10.1016/j.jallcom.2020.156563 |
|
[43] |
PARK J M, CHOE J, KIM J G, et al. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Materials Research Letters, 2020, 8(1): 1-7. DOI:10.1080/21663831.2019.1638844 |
|
[44] |
KIM J G, PARK J M, SEOL J B, et al. Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy[J]. Materials Science and Engineering: A, 2020, 773: 138726. DOI:10.1016/j.msea.2019.138726 |
|
[45] |
PARK J M, CHOE J, PARK H K, et al. Synergetic strengthening of additively manufactured (CoCrFeMnNi) 99C 1 high-entropy alloy by heterogeneous anisotropic microstructure[J]. Additive Manufacturing, 2020, 35: 101333. DOI:10.1016/j.addma.2020.101333 |
|
[46] |
JOSEPH J, STANFORD N, HODGSON P, et al. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC Al xCoCrFeNi high entropy alloys[J]. Journal of Alloys and Compounds, 2017, 726: 885-895. DOI:10.1016/j.jallcom.2017.08.067 |
|
[47] |
PEYROUZET F, HACHET D, SOULAS R, et al. Selective laser melting of Al 0.3CoCrFeNi high-entropy alloy: printability, microstructure, and mechanical properties[J]. JOM, 2019, 71(10): 3443-3451. DOI:10.1007/s11837-019-03715-1 |
|
[48] |
NARTU M S K K Y, ALAM T, DASARI S, et al. Enhanced tensile yield strength in laser additively manufactured Al 0.3CoCrFeNi high entropy alloy[J]. Materialia, 2020, 9: 100522. DOI:10.1016/j.mtla.2019.100522 |
|
[49] |
徐勇勇, 孙琨, 邹增琪, 等. 选区激光熔化制备Al 0. 5CoCrFeNi高熵合金的工艺参数及组织性能[J]. 西安交通大学学报, 2018, 52(1): 151-157. XU Y Y, SUN K, ZOU Z Q, et al. Processing parameters, microstructure and properties of Al 0.5CoCrFeNi high entropy alloy prepared by selective laser melting[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 151-157. |
|
[50] |
ZHOU P F, XIAO D H, WU Z, et al. Al 0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders[J]. Materials Science and Engineering: A, 2019, 739: 86-89. DOI:10.1016/j.msea.2018.10.035 |
|
[51] |
GWALANI B, GANGIREDDY S, SHUKLA S, et al. Compositionally graded high entropy alloy with a strong front and ductile back[J]. Materials Today Communications, 2019, 20: 100602. DOI:10.1016/j.mtcomm.2019.100602 |
|
[52] |
MOHANTY A, SAMPREETH J K, BEMBALGE O, et al. High temperature oxidation study of direct laser deposited Al xCoCrFeNi ( x=0.3, 0.7) high entropy alloys[J]. Surface and Coatings Technology, 2019, 380: 125028. DOI:10.1016/j.surfcoat.2019.125028 |
|
[53] |
LI M, GAZQUEZ J, BORISEVICH A, et al. Evaluation of microstructure and mechanical property variations in Al xCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method[J]. Intermetallics, 2018, 95: 110-118. DOI:10.1016/j.intermet.2018.01.021 |
|
[54] |
KUNCE I, POLANSKI M, KARCZEWSKI K, et al. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping[J]. Journal of Alloys and Compounds, 2015, 648: 751-758. DOI:10.1016/j.jallcom.2015.05.144 |
|
[55] |
WANG R, ZHANG K, DAVIES C, et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication[J]. Journal of Alloys and Compounds, 2017, 694: 971-981. DOI:10.1016/j.jallcom.2016.10.138 |
|
[56] |
FUJIEDA T, SHIRATORI H, KUWABARA K, et al. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials[J]. Materials Letters, 2015, 159: 12-15. DOI:10.1016/j.matlet.2015.06.046 |
|
[57] |
SHIRATORI H, FUJIEDA T, YAMANAKA K, et al. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting[J]. Materials Science and Engineering: A, 2016, 656: 39-46. DOI:10.1016/j.msea.2016.01.019 |
|
[58] |
NIU P D, LI R D, YUAN T C, et al. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting[J]. Intermetallics, 2019, 104: 24-32. DOI:10.1016/j.intermet.2018.10.018 |
|
[59] |
KARLSSON D, MARSHAL A, JOHANSSON F, et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy-a comparison between selective laser melting and induction melting[J]. Journal of Alloys and Compounds, 2019, 784: 195-203. DOI:10.1016/j.jallcom.2018.12.267 |
|
[60] |
KARLSSON D, LINDWALL G, LUNDBÄCK A, et al. Binder jetting of the AlCoCrFeNi alloy[J]. Additive Manufacturing, 2019, 27: 72-79. DOI:10.1016/j.addma.2019.02.010 |
|
[61] |
SISTLA H R, NEWKIRK J W, LIOU F F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2-x (x=0.3, 1) high entropy alloys[J]. Materials & Design, 2015, 81: 113-121. |
|
[62] |
BORKAR T, CHAUDHAARY V, GWALANI B, et al. A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCo xCr 1-xFeNi[J]. Advanced Engineering Materials, 2017, 19(8): 1700048. DOI:10.1002/adem.201700048 |
|
[63] |
KUNCE I, POLANSKI M, BYSTRZYCKI J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using laser engineered net shaping (LENS)[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9904-9910. DOI:10.1016/j.ijhydene.2014.02.067 |
|
[64] |
DOBBELSTEIN H, GUREVICH E L, GEORGE E P, et al. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy[J]. Additive Manufacturing, 2018, 24: 386-390. DOI:10.1016/j.addma.2018.10.008 |
|
[65] |
李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10): 61-67. LI Q Y, LI D C, ZHANG H, et al. Study on structure and strength of NbMoTaTi refractory high entropy alloy fabricated by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61-67. |
|
[66] | |
|
[67] |
DOBBELSTEIN H, GUREVICH E L, GEORGE E P, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Additive Manufacturing, 2019, 25: 252-262. DOI:10.1016/j.addma.2018.10.042 |
|
[68] |
MELIA M A, WHETTEN S R, PUCKETT R, et al. High-throughput additive manufacturing and characterization of refractory high entropy alloys[J]. Applied Materials Today, 2020, 19: 100560. DOI:10.1016/j.apmt.2020.100560 |
|
[69] | |
|
[70] |
LUO S, GAO P, YU H, et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical behavior[J]. Journal of Alloys and Compounds, 2019, 771: 387-397. DOI:10.1016/j.jallcom.2018.08.290 |
|
[71] |
LUO S, ZHAO C, SU Y, et al. Selective laser melting of dual phase AlCrCuFeNi x high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms[J]. Additive Manufacturing, 2020, 31: 100925. DOI:10.1016/j.addma.2019.100925 |
|
[72] |
LUO S, SU Y, WANG Z. Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting[J]. Science China Materials, 2020, 63(7): 1279-1290. DOI:10.1007/s40843-020-1291-9 |
|
[73] |
BORKAR T, GWALANI B, CHOUDHURI D, et al. A combinatorial assessment of Al xCrCuFeNi 2 (0 < x < 1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties[J]. Acta Materialia, 2016, 116: 63-76. DOI:10.1016/j.actamat.2016.06.025 |
|
[74] |
CHOUDHURI D, GWALANI B, GORSSE S, et al. Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys[J]. Scripta Materialia, 2017, 127: 186-190. DOI:10.1016/j.scriptamat.2016.09.023 |
|
[75] |
SU Y, LUO S, WANG Z. Microstructure evolution and cracking behaviors of additively manufactured Al xCrCuFeNi 2 high entropy alloys via selective laser melting[J]. Journal of Alloys and Compounds, 2020, 842: 155823. DOI:10.1016/j.jallcom.2020.155823 |
|
[76] |
CHEN X, YAN L, KARNATI S, et al. Fabrication and characterization of Al xCoFeNiCu 1-x high entropy alloys by laser metal deposition[J]. Coatings, 2017, 7(4): 47. DOI:10.3390/coatings7040047 |
|
[77] |
WANG Y, LI R, NIU P, et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting[J]. Intermetallics, 2020, 120: 106746. DOI:10.1016/j.intermet.2020.106746 |
|
[78] |
FUJIEDA T, CHEN M, SHIRATORI H, et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting[J]. Additive Manufacturing, 2019, 25: 412-420. DOI:10.1016/j.addma.2018.10.023 |
|
[79] |
GWALANI B, SONI V, WASEEM O A, et al. Laser additive manufacturing of compositionally graded AlCrFeMoV x ( x=0 to 1) high-entropy alloy system[J]. Optics and Laser Technology, 2019, 113: 330-337. DOI:10.1016/j.optlastec.2019.01.009 |
|
[80] |
SARSWAT P K, SARKAR S, MURALI A, et al. Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system[J]. Applied Surface Science, 2019, 476: 242-258. DOI:10.1016/j.apsusc.2018.12.300 |
|
[81] |
ZHU Z G, AN X H, LU W J, et al. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy[J]. Materials Research Letters, 2019, 7(11): 453-459. DOI:10.1080/21663831.2019.1650131 |
|
[82] |
AGRAWAL P, THAPLIYAL S, NENE S S, et al. Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing[J]. Additive Manufacturing, 2020, 32: 101098. DOI:10.1016/j.addma.2020.101098 |
|
[83] |
THAPLIYAL S, NENE S S, AGRAWAL P, et al. Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2020, 36: 101455. DOI:10.1016/j.addma.2020.101455 |
|
[84] |
YAO H, TAN Z, HE D, et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting[J]. Journal of Alloys and Compounds, 2020, 813: 152196. DOI:10.1016/j.jallcom.2019.152196 |
|
[85] |
VOGIATZIEF D, EVIRGEN A, GEIN S, et al. Laser powder bed fusion and heat treatment of an AlCrFe 2Ni 2 high entropy alloy[J]. Frontiers in Materials, 2020, 7: 248. DOI:10.3389/fmats.2020.00248 |
|
[86] |
KATZ-DEMYANETZ A, GORBACHEV I I, ESHED E, et al. High entropy Al 0.5CrMoNbTa 0.5 alloy: additive manufacturing vs casting vs CALPHAD approval calculations[J]. Materials Characterization, 2020, 167: 110505. DOI:10.1016/j.matchar.2020.110505 |
|
[87] |
EWALD S, KIES F, HERMSEN S, et al. Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion[J]. Materials, 2019, 12(10): 1-15. |
|
[88] |
YANG X, ZHOU Y, XI S, et al. Additively manufactured fine grained Ni 6Cr 4WFe 9Ti high entropy alloys with high strength and ductility[J]. Materials Science and Engineering: A, 2019, 767: 138394. DOI:10.1016/j.msea.2019.138394 |
|
[89] |
WANG Z, GU J, AN D, et al. Characterization of the microstructure and deformation substructure evolution in a hierarchal high-entropy alloy by correlative EBSD and ECCI[J]. Intermetallics, 2020, 121: 106788. DOI:10.1016/j.intermet.2020.106788 |
|