[1] | |
|
[2] |
常增花, 王建涛, 李文进, 等. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25. CHANG Z H, WANG J T, LI W J, et al. Research progress on interface reaction of silicon-based anode for lithium-ion battery[J]. Journal of Materials Engineering, 2019, 47(2): 11-25. |
|
[3] |
袁颂东, 杨灿星, 江国栋, 等. 锂离子电池高镍三元材料的研究进展[J]. 材料工程, 2019, 47(10): 1-9. YUAN S D, YANG C X, JIANG G D, et al. Research progress in nickel-rich ternary materials for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47(10): 1-9. DOI:10.11868/j.issn.1001-4381.2018.001301 |
|
[4] |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem Rev, 2017, 117(15): 10403-10473. DOI:10.1021/acs.chemrev.7b00115 |
|
[5] |
LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12(3): 194-206. DOI:10.1038/nnano.2017.16 |
|
[6] | |
|
[7] |
CHENG Q, WEI L, LIU Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nat Commun, 2018, 9(1): 2942-2951. DOI:10.1038/s41467-018-05289-z |
|
[8] | |
|
[9] |
COHEN Y S, COHEN Y, AURBACH D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy[J]. The Journal of Physical Chemistry B, 2000, 104(51): 12282-12291. DOI:10.1021/jp002526b |
|
[10] |
STEIGER J, KRAMER D, MÖNIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536. DOI:10.1016/j.electacta.2014.05.120 |
|
[11] |
ZHAO J, LIAO L, SHI F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. J Am Chem Soc, 2017, 139(33): 11550-11558. DOI:10.1021/jacs.7b05251 |
|
[12] |
LI Y, LI Y, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. DOI:10.1126/science.aam6014 |
|
[13] |
LI Y, HUANG W, LI Y, et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177. DOI:10.1016/j.joule.2018.08.004 |
|
[14] |
ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. DOI:10.1038/s41586-018-0397-3 |
|
[15] |
FANG C, LI J, ZHANG M, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511-515. DOI:10.1038/s41586-019-1481-z |
|
[16] |
WANG J, HUANG W, PEI A, et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy[J]. Nature Energy, 2019, 4(8): 664-670. DOI:10.1038/s41560-019-0413-3 |
|
[17] |
ZHENG J, ENGELHARD M H, MEI D, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): 17012-17019. DOI:10.1038/nenergy.2017.12 |
|
[18] |
HAGOS T T, THIRUMALRAJ B, HUANG C J, et al. Locally concentrated LiPF 6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries[J]. ACS Appl Mater Interfaces, 2019, 11(10): 9955-9963. DOI:10.1021/acsami.8b21052 |
|
[19] |
WEBER R, GENOVESE M, LOULI A J, et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte[J]. Nature Energy, 2019, 4(8): 683-689. DOI:10.1038/s41560-019-0428-9 |
|
[20] |
WANG J, YAMADA Y, SODEYAMA K, et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nat Commun, 2016, 7(1): 12032-12041. DOI:10.1038/ncomms12032 |
|
[21] |
CHEN S, ZHENG J, MEI D, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv Mater, 2018, 30(21): 1706102-1706108. DOI:10.1002/adma.201706102 |
|
[22] |
REN X, ZOU L, JIAO S, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902. DOI:10.1021/acsenergylett.9b00381 |
|
[23] |
WANG X, YASUKAWA E, MORI S. Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries[J]. Journal of The Electrochemical Society, 1999, 146(11): 3992-3998. DOI:10.1149/1.1392581 |
|
[24] | |
|
[25] |
QIN X, SHAO M, BALBUENA P B. Elucidating mechanisms of Li plating on Li anodes of lithium-based batteries[J]. Electrochimica Acta, 2018, 284: 485-494. DOI:10.1016/j.electacta.2018.07.159 |
|
[26] |
MIAO R, YANG J, XU Z, et al. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries[J]. Sci Rep, 2016, 6: 21771-21779. DOI:10.1038/srep21771 |
|
[27] |
HUANG Z, ZENG H, XIE M, et al. A stable lithium-oxygen battery electrolyte based on fully methylated cyclic ether[J]. Angew Chem Int Ed Engl, 2019, 58(8): 2345-2349. DOI:10.1002/anie.201812983 |
|
[28] | |
|
[29] |
SUO L, XUE W, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proleedings of the National Academy of Sciences, 2018, 115(6): 1156-1161. DOI:10.1073/pnas.1712895115 |
|
[30] |
FAN X, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nat Nanotechnol, 2018, 13(8): 715-722. DOI:10.1038/s41565-018-0183-2 |
|
[31] |
CHEN L, FAN X, HU E, et al. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery[J]. Chem, 2019, 5(4): 896-912. DOI:10.1016/j.chempr.2019.02.003 |
|
[32] |
FAN X, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. DOI:10.1038/s41560-019-0474-3 |
|
[33] |
SUO L, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat Commun, 2013, 4: 1481-1490. DOI:10.1038/ncomms2513 |
|
[34] |
QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nat Commun, 2015, 6(1): 6362-6370. DOI:10.1038/ncomms7362 |
|
[35] |
QIAN J, ADAMS B D, ZHENG J, et al. Anode-free rechargeable lithium metal batteries[J]. Advanced Functional Materials, 2016, 26(39): 7094-7102. DOI:10.1002/adfm.201602353 |
|
[36] | |
|
[37] | |
|
[38] |
JIAO S, REN X, CAO R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746. DOI:10.1038/s41560-018-0199-8 |
|
[39] |
MIAO R, YANG J, FENG X, et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility[J]. Journal of Power Sources, 2014, 271: 291-297. DOI:10.1016/j.jpowsour.2014.08.011 |
|
[40] | |
|
[41] | |
|
[42] |
FANG Z, MA Q, LIU P, et al. Novel concentrated Li[(FSO 2)(n-C 4F 9SO 2)N]-based ether electrolyte for Superior stability of metallic lithium anode[J]. ACS Appl Mater Interfaces, 2017, 9(5): 4282-4289. DOI:10.1021/acsami.6b03857 |
|
[43] |
YOSHIDA K, NAKAMURA M, KAZUE Y, et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes[J]. J Am Chem Soc, 2011, 133(33): 13121-13129. DOI:10.1021/ja203983r |
|
[44] |
CHEN X, LI H R, SHEN X, et al. The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes[J]. Angew Chem Int Ed Engl, 2018, 57(51): 16643-16647. DOI:10.1002/anie.201809203 |
|
[45] |
YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. J Am Chem Soc, 2014, 136(13): 5039-5046. DOI:10.1021/ja412807w |
|
[46] |
LI F, SHANGGUAN X, JIA G, et al. Dual-salts of LiTFSI and LiODFB for high voltage cathode LiNi 0.5Mn 1.5O 4[J]. Journal of Solid State Electrochemistry, 2016, 20(12): 3491-3498. DOI:10.1007/s10008-016-3313-5 |
|
[47] |
KALHOFF J, BRESSER D, BOLLOLI M, et al. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as(Co)solvent[J]. Chem Sus Chem, 2014, 7(10): 2939-2946. DOI:10.1002/cssc.201402502 |
|
[48] |
PARK K, YU S, LEE C, et al. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes[J]. Journal of Power Sources, 2015, 296: 197-203. DOI:10.1016/j.jpowsour.2015.07.052 |
|
[49] |
ZHENG J, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4(8): 1700032-1700050. DOI:10.1002/advs.201700032 |
|
[50] |
ZENG Z, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8): 674-681. DOI:10.1038/s41560-018-0196-y |
|
[51] |
NIU C, LEE H, CHEN S, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551-559. DOI:10.1038/s41560-019-0390-6 |
|
[52] |
REN X, CHEN S, LEE H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem, 2018, 4(8): 1877-1892. DOI:10.1016/j.chempr.2018.05.002 |
|
[53] | |
|
[54] |
YU L, CHEN S, LEE H, et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries[J]. ACS Energy Letters, 2018, 3(9): 2059-2067. DOI:10.1021/acsenergylett.8b00935 |
|
[55] |
AMANCHUKWU C V, KONG X, QIN J, et al. Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping[J]. Advanced Energy Materials, 2019, 9(41): 1902116-1902126. DOI:10.1002/aenm.201902116 |
|
[56] |
CAO X, REN X, ZOU L, et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nature Energy, 2019, 4(9): 796-805. DOI:10.1038/s41560-019-0464-5 |
|
[57] |
ZENG G, AN Y, XIONG S, et al. Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11(26): 23229-23235. DOI:10.1021/acsami.9b05570 |
|
[58] |
MARKEVICH E, SALITRA G, AURBACH D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced li-ion batteries[J]. ACS Energy Letters, 2017, 2(6): 1337-1345. DOI:10.1021/acsenergylett.7b00163 |
|
[59] |
ZHANG X Q, CHEN X, CHENG X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew Chem Int Ed Engl, 2018, 57(19): 5301-5305. DOI:10.1002/anie.201801513 |
|
[60] |
SU C C, HE M, AMINE R, et al. Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries[J]. Energy Storage Materials, 2019, 17: 284-292. DOI:10.1016/j.ensm.2018.11.003 |
|
[61] |
AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate(VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439. DOI:10.1016/S0013-4686(01)00858-1 |
|
[62] |
ZHANG X Q, CHEN X, HOU L P, et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 4(2): 411-416. DOI:10.1021/acsenergylett.8b02376 |
|
[63] | |
|
[64] |
WANG G, XIONG X, XIE D, et al. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes[J]. Energy Storage Materials, 2019, 23: 701-706. DOI:10.1016/j.ensm.2019.02.026 |
|
[65] |
FU X, WANG G, DANG D, et al. Sulfuryl chloride as a functional additive towards dendrite-free and long-life Li metal anodes[J]. Journal of Materials Chemistry: A, 2019, 7(43): 25003-25009. DOI:10.1039/C9TA09068A |
|
[66] |
OZHABES Y, GUNCELER D, ARIAS T A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression[J]. Physics, 2015, 1-7. |
|
[67] |
OUYANG Y, GUO Y, LI D, et al. Single additive with dual functional-ions for stabilizing lithium anodes[J]. ACS Appl Mater Interfaces, 2019, 11(12): 11360-11368. DOI:10.1021/acsami.8b21420 |
|
[68] |
PENG Z, CAO X, GAO P, et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive[J]. Advanced Functional Materials, 2020, 30(24): 2001285. DOI:10.1002/adfm.202001285 |
|
[69] |
LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 2(9): 17119-17125. DOI:10.1038/nenergy.2017.119 |
|
[70] |
BISWAL P, STALIN S, KLUDZE A, et al. Nucleation and early stage growth of Li electrodeposits[J]. Nano Lett, 2019, 19(11): 8191-8200. DOI:10.1021/acs.nanolett.9b03548 |
|
[71] |
LU Y, TU Z, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nat Mater, 2014, 13(10): 961-969. DOI:10.1038/nmat4041 |
|
[72] |
REN X, ZHANG Y, ENGELHARD M H, et al. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF 6 and cyclic carbonate additives[J]. ACS Energy Letters, 2017, 3(1): 14-19. |
|
[73] |
LI X, ZHENG J, REN X, et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives[J]. Advanced Energy Materials, 2018, 8(15): 1-10. |
|
[74] |
DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J Am Chem Soc, 2013, 135(11): 4450-4456. DOI:10.1021/ja312241y |
|
[75] |
WANG Q, YANG C K, YANG J J, et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance li-metal batteries[J]. Advanced Materials, 2019, 31(41): 1903248-1903257. DOI:10.1002/adma.201903248 |
|
[76] |
XU M, HAO L, LIU Y, et al. Experimental and theoretical investigations of dimethylacetamide(DMAc) as electrolyte stabilizing additive for lithium ion batteries[J]. The Journal of Physical Chemistry: C, 2011, 115(13): 6085-6094. DOI:10.1021/jp109562u |
|
[77] |
KIM Y S, KIM T H, LEE H, et al. Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries[J]. Energy & Environmental Science, 2011, 4(10): 4038-4045. |
|
[78] |
LEE S H, HWANG J Y, PARK S J, et al. Adiponitrile(C 6H 8 N 2): a new bi-functional additive for high-performance Li-metal batteries[J]. Advanced Functional Materials, 2019, 29(30): 1902496-1902504. DOI:10.1002/adfm.201902496 |
|
[79] |
REN X, ZOU L, CAO X, et al. Enabling high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3(7): 1662-1676. DOI:10.1016/j.joule.2019.05.006 |
|
[80] |
SUN H H, DOLOCAN A, WEEKS J A, et al. In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery[J]. Journal of Materials Chemistry: A, 2019, 7(30): 17782-17789. DOI:10.1039/C9TA05063A |
|