材料工程  2021, Vol. 49 Issue (7): 21-34   PDF    
http://dx.doi.org/10.11868/j.issn.1001-4381.2020.000088
0

文章信息

欧阳丽霞, 武兆辉, 王建涛
OUYANG Li-xia, WU Zhao-hui, WANG Jian-tao
锂离子电池浆料的制备技术及其影响因素
Fabricating technology and influence factors of slurries in Li-ion batteries
材料工程, 2021, 49(7): 21-34
Journal of Materials Engineering, 2021, 49(7): 21-34.
http://dx.doi.org/10.11868/j.issn.1001-4381.2020.000088

文章历史

收稿日期: 2020-02-02
修订日期: 2020-10-13
锂离子电池浆料的制备技术及其影响因素
欧阳丽霞1,2,3 , 武兆辉1,2 , 王建涛1,2,3     
1. 有研科技集团有限公司 国家动力电池创新中心, 北京 100088;
2. 国联汽车动力电池研究院有限责任公司, 北京 100088;
3. 北京有色金属研究总院, 北京 100088
摘要:新能源汽车行业的蓬勃发展对高性能锂离子电池需求越来越迫切。作为锂离子电池的重要组成部分,电极性能对于锂离子电池整体性能的影响十分显著。而在电极中,作为多组分混合物浆料的均匀性和稳定性对于电极片性能的影响巨大。但是目前研究者们的重点通常都是放在电极特性和电池组装工艺上,对决定电池性能浆料的特性研究较少。电极组分的均匀性是由浆料组分的均匀性和稳定性决定,而浆料是一种多组分悬浮颗粒组成的复杂体系,其均匀性和稳定性难以直接观测,浆料的流变性能是当前能反映浆料均匀性和稳定性的最有效的指标参数。本文阐述了近年来锂离子电池电极浆料制造过程中活性物质、黏结剂、导电剂、溶剂、分散添加剂、pH值、温度、混合步骤对浆料流变性能的影响,总结了这些因素对浆料流变性能的影响规律,为研制出更加均匀和稳定的浆料体系及高性能锂离子电池提供一定的指导作用。
关键词锂离子电池    电极浆料    流变特性    均匀性    稳定性    
Fabricating technology and influence factors of slurries in Li-ion batteries
OUYANG Li-xia1,2,3, WU Zhao-hui1,2, WANG Jian-tao1,2,3    
1. National Power Battery Innovation Center, GRINM Group Corporation Limited, Beijing 100088, China;
2. China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China;
3. General Research Institute for Nonferrous Metals, Beijing 100088, China
Abstract: The rapid development of new energy vehicles places a more and more urgent demand for high-performance lithium-ion batteries. As an important part of lithium-ion battery, the electrode performance has a significant impact on the overall performance of lithium-ion battery. In the electrode, the uniformity and stability of the slurry, which is a multi-component mixture, own a great influence on the performance of the electrode sheet. However, most of the current researchers' interests are usually placed after the slurry process, that is, only focus on the performance of the electrode, but ignore the slurry which is the preconditions of the performance of the electrode. Uniformity of the electrode is determined by the uniformity and stability of slurries. However, as a complicated mixture of multicomponent suspended particles, it's hard to measure the uniformity and stability of the slurry directly. At present, the rheological property test of the slurry is the most effective method to characterize the uniformity and stability of the slurry. In this paper, the effects of active materials, binders, conductive agents, solvents, dispersing additives, pH value, temperature, mixing steps on the rheological properties of the slurry during the manufacturing of lithium ion battery electrode pastes were reviewed. The influence of these factors on the rheological properties of the slurry was summarized, which provides a certain guiding role for fabricating slurries with higher uniformity and stability and developing high performance Li-ion batteries.
Key words: Li-ion battery    electrode slurry    rheological property    uniformity    stability    

锂离子电池作为一种新型的高性能可充电电池,因其独特的优点而得到广泛的研究和应用,主要包括正极、负极、电解液和隔膜。其工作机理是锂离子通过电解液往返于正负电极间嵌入和脱出的过程, 故正负极电极的性能对于锂离子电池总体性能起决定性作用[1]

制造锂离子电池电极最常用的工业技术为湿法处理。尽管已被广泛接受,但该处理方法仍面临着许多的问题,包括昂贵且危险溶剂的回收、涂层的不一致性以及由溶剂干燥过程所导致的微观结构的变化[2]。这些问题都与制备锂离子电池的第一道工艺——浆料的性能有着重要关系。

锂离子电池电极浆料通常包括活性物质、导电剂、黏结剂和溶剂。导电剂为电子传输提供通道,黏结剂把活性物质与导电剂黏附在一起并将其黏附在集流器上[3-4]。浆料制备过程为将其组分混合均匀的过程,浆料的性能决定了后续锂离子电池的性能。浆料体系中不同颗粒间的物理性质如尺寸、形貌不同,颗粒间往往会发生分散或团聚[5-9],造成浆料内部均匀性降低,这会使得锂电池寿命减小甚至产生安全隐患。

浆料的性能还对电极的生产率有着重要的影响。除去材料之外,电池成本中最昂贵的便是电极制造。电极生产包括浆料的制备、涂布与干燥。而与涂布和干燥相比,得到均匀的浆料所需的时间是限制电极产量的关键因素。另外,浆料的质量还会影响其涂布的可加工性。常用的涂布设备除了有工业要求的操作速度,还要能精确地实现均匀的涂布厚度。但通常的涂层仍会存在一些缺陷,如附聚物、缩孔、金属颗粒污染或组分过度的不均匀,从而影响循环过程中的库仑效率或倍率性能[2]。而这些缺陷均可以由混合不充分、浆料脱气不充分或硬件故障产生。

根据研究,浆料的均匀性和稳定性的主要因素有原料组分、温度、pH值和混合顺序等。本文总结了影响锂离子电池电极浆料稳定性和均匀性的因素,对研制出更加均匀和稳定的浆料体系、制备优质电极和提高电池性能具有一定的指导意义。

1 电极浆料研究遇到的问题

锂离子电池浆料是一种处于非平衡态的悬浮液体系。为满足各行业对高性能锂离子电池的需求,固体颗粒粒径通常很小,朝着纳米方向发展,从而导致颗粒极其容易团聚,以及浆料中各组分的分布不均匀[10-11],影响电极涂层内部的微观结构和电池的倍率性能,进而对电池的安全性和耐用性均会产生影响。在活性材料、导电剂以及集流体之间存在着导电的网络连接,浆料内部材料分散越均匀,这种网络连接的导电性也就越强,从而锂电池的性能也就越优异。因此,浆料内部物质的分散均匀性对于锂离子电池的性能有着非常重要的作用[12-13]

随着匀浆结束,搅拌停止,浆料会出现沉降、絮凝聚等现象,这对后续的涂布等工序造成较大的影响。因而浆料在制造好之后,在涂敷之前的存储期间内必须要能够有一定的稳定性。通常,稳定性定义为浆料承受质量或相分离的能力,允许在混合步骤后长时间保持均匀的颗粒分布[14]

在实际情况中,浆料本身大多都是深色,用肉眼无法直接观测内部颗粒分布是否均匀,而根据其为黏性流体或胶体特性,不同的分散状态对应着不同的流变性,因此,研究者都是通过浆料的流变性能来分析浆料内部均匀性[15-16]。大量研究表明,浆料的分散均匀性和沉降稳定性与原料添加顺序、溶剂种类、固含量、搅拌工艺等密切相关[16-22]

2 浆料分散性和均匀性的影响因素

黏度是流体黏滞性的一种度量,是流体流动力对其内部摩擦现象的一种表示。浆料的黏度通常随剪切速率而变化,该现象可对浆料中的颗粒-聚合物之间的相互作用进行详细的描述。当存在剪切变稀行为时,浆料中存在容易被剪切应力破坏的软团聚物。相反,剪切增稠的存在通常表明浆料中有着硬聚集颗粒。黏弹性也是流变学重要的参考参数。通过储能模量(G′)和损耗模量(G″)的相对值来表征浆料的黏弹性特征。储能模量G′又称为弹性模量,代表浆料发生可逆弹性形变时所储存的能力,是浆料弹性变形的度量。损耗模量G″又称为黏性模量,代表浆料发生不可逆变形时消耗的能量,是浆料黏性变形的度量。在频率扫描中,基于G′和G″的相对大小,并评估G′对角频率的灵敏度,能够反映出浆料是流体状态还是类固体状态的信息。并且在低频范围下,G′>G″且其差值越大,表明浆料的稳定性越好。较为少见的是幅度扫描测试。在幅度扫描中的低应变下,G′>G″且G′的值保持相对恒定,这表明浆料内部存在着网络结构,且该网络结构是完整的。该凝聚网络区域成为线性黏弹性区域,并且G′的常数值被称为平衡存储模量(G0),描述网络结构的强度。另一种流变性质是屈服应力(σ0),表示诱导浆料流动所需的最小力。

研究颗粒-聚合物体系的内部结构和分散状态的广泛方法为流变学。如果颗粒之间存在牢固的结合,彼此之间没有很好的分散,通过流变学特性发现固体或凝胶状行为,且其黏度很高。相反,当浆料充分分散时,将出现类似流体的行为,并且黏度将大大降低。

2.1 活性物质对浆料流变性的影响

活性材料的表面状态会影响着浆料特性和分散状态。Tsai等[23]研究了两种表面状态的磷酸铁锂(LiFePO4, LFP)对水系浆料的流体状态的影响,其中凝胶态磷酸铁锂(G-LFP)是对分散态磷酸铁锂(D-LFP)进行碳包覆处理后的材料。G-LFP颗粒的表面包覆碳上存在着众多的碳衍生物,如羧基、羟基和羰基等有机官能团,这些官能团间的相互作用导致G-LFP颗粒在水基浆料中的凝胶化。由图 1(a)中可知,D-LFP浆料为流体特性,但其G′>G″表明悬浮液应该更偏向于凝胶特性[23-24]。这可能由D-LFP浆料具有极高的固体负载量,未分散开的D-LFP颗粒形成的团聚体所造成。对于G-LFP颗粒制备的浆料,其G′>G″表明浆料内G-LFP颗粒也存在着大量的团聚。但G-LFP浆料的G′远大于G″表明颗粒的凝胶化占主导效应。和D-LFP浆料相比,G-LFP浆料的G′对扫描频率的依赖性更低,其较高弹性与浆料内部由有机官能团形成的3D凝胶状结构的较高弹性相关。此外,G-LFP浆料的G′和G″数值均比D-LFP浆料的G′和G″高几倍。这一实验结果表明G-LFP浆料中的颗粒之间和颗粒与溶剂之间的相互作用更强。从图 1(b)中可以看出在氮气(N2)中经过750 ℃处理后的G-LFPΔN2的黏度值远远小于G-LFP浆料。这是因为G-LFP经过热处理之后,其表面的碳衍生物的减少有利于LFP颗粒的解凝胶,使得G-LFP浆料由凝胶状态转为分散状态。D-LFPΔN2浆料流动性提升也是如此。

图 1 64.1%(质量分数,下同)的D-LFP浆料和G-LFP浆料的流变特性[25] (a)黏弹性图,插图为D-LFP(左)和G-LFP(右)浆料的形态;(b)黏度变化图,插图为D-LFPΔN2(左)和G-LFPΔN2(右)浆料的形态 Fig. 1 Rheological properties of slurries containing 64.1% (mass fraction, the same below) D-LFP and G-LFP[25] (a)viscoelastic properties, inset shows pictures of aqueous slurries of D-LFP (left) and G-LFP (right); (b)viscosity properties, inset shows pictures of aqueous slurries of D-LFPΔN2 (left) and G-LFPΔN2 (right)

LFP颗粒表面的碳衍生物还会影响电池的电化学性能。颗粒表面的衍生物越多,包覆碳上的不能导电的sp3键合碳越多。G-LFP材料制备的电池的阻抗比D-LFP材料制备的电池的阻抗更高是因为G-LFP的电荷转移阻抗更高。G-LFP更高的阻抗使得G-LFP有着更低的放电平台和更低的比容量。

活性材料颗粒的尺寸大小对浆料的分散性和稳定也有着重要的影响。Bauer等[14]以颗粒尺寸分别为130 nm的LiFePO4(LFP)和8.9 μm的镍钴锰酸锂(Li(Ni, Mn, Co)O2, NMC)为活性材料研究正极浆料的流变性和稳定性。

LFP浆料存在较为明显的剪切变稀行为和屈服点,即LFP浆料形成了典型的凝胶类型结构。这是因为130 nm LFP颗粒具有大量的相互作用位点,特征直径在100~200 nm的聚偏氟乙烯(polyvinylidene fluoride, PVDF)分子链形成了更平坦的构型,降低与其他颗粒间直接接触的可能性。在浆料分散体中由PVDF和固体颗粒之间的吸引力形成了凝胶网络结构。

和细小的LFP颗粒相比,具有相同固含量、由颗粒尺寸更大的NMC制备的浆料有着更低的黏度,仅存在轻微的剪切变稀行为,且无屈服点。这是流体系统的典型行为。将NMC体积分数升至30%时,该浆料的黏度会显著升高,但仍没有屈服点,表明该浆料也是典型的流体性系统。这是因为NMC颗粒尺寸为8.9 μm,PVDF分子特征尺寸远小于NMC颗粒尺寸,很大一部分的黏结剂会沉降在与下一个颗粒距离很远以至于不能形成桥接作用的位置,无法形成有吸引力的网络结构。最终无法形成稳定的聚合物凝胶结构。当NMC颗粒增多虽能让结合键数有所增加,NMC颗粒网络结构的整体吸引力相互作用有所增强,但在低剪切速率下也能诱导结构分解,无法形成稳定的凝胶。由弱吸引力形成的凝胶网络可以固定颗粒以实现颗粒系统的稳定均匀化,但必须适当调整吸引力,既要防止因形成过于坚固的凝胶网络而无法达到电极涂覆过程中完全流化的要求;也要避免所形成的凝胶结构强度过弱而无法抵抗离散粒子的沉降。

2.2 黏结剂对浆料流变性的影响

黏结剂含量对浆料的流变特性有着重要影响。Li等[26]研究了黏结剂丁苯橡胶(styrene butadiene rubber, SBR)和羧甲基纤维素(carboxymethyl cellulose, CMC)的总含量恒定条件下不同比例的SBR/CMC对钴酸锂(LiCoO2)正极浆料流变性的影响。CMC在水溶液中解离从而形成阴离子电荷,CMC的特定吸附可以增加LiCoO2的负电荷密度和Zeta电位的大小,这为LiCoO2在水悬浮液中的分散提供静电稳定机制。定义SBR在SBR/CMC中的占比为[SBR]。如图 2(a)所示,[SBR]为90%和70%时浆料的黏度曲线都比较复杂,在低剪切区域呈现剪切变稀,在高剪切率下呈现剪切增稠。随着[SBR]的减小,浆料的表观黏度增大,剪切变稀现象更明显。图 2(b)中的相对黏度排除了SBR和CMC的流变本质特性对浆料流变的影响。很显然,浆料的相对黏度随着[SBR]的减小而降低,表明[SBR]的下降有利于浆料中电极颗粒的分散。此时仍可观察到[SBR]较高时浆料存在复杂的流变行为,表明浆料中的电极颗粒同时存在着软团聚体和硬聚集体。当[SBR]为50%时,浆料仅表现出剪切增稠行为。当[SBR]为30%和10%时,浆料表现出牛顿流体行为,浆料中的固体颗粒分散性能优良。

图 2 不同SBR含量下68%LiCoO2浆料的流变特性[26] (a)表观黏度;(b)相对黏度 Fig. 2 Rheological properties of slurries containing 68%LiCoO2 under different SBR contents[26] (a)apparent viscosity; (b)relative viscosity

电极颗粒上的黏结剂吸附量随着[SBR]减少而降低,有更多自由的黏结剂在干燥过程中随着水分子迁移到电极表面。因此,当[SBR]减少时,电极中黏结剂分布的均匀性会下降,极片顶部(95%)和底部(5%)位置黏结剂含量的差异增大。黏结剂分布均匀性的降低导致极片的黏附力降低,即[SBR]较低时, 极片较差的黏附性主要归因于电极片中黏合剂分布均匀性的降低。

在电性能方面,决定电极表面电阻的主要因素是黏合剂的分布和电极黏合的性质,而不是电极粉末的分散。因此,当[SBR]降低时,尽管电极粉末的分散变得更好,但未压缩电极片的表面电阻增加。在电化学性能方面,未辊压的电极随着黏合强度的降低总体上表现出容量下降的趋势,但[SBR]为30%和10%的电极因其电极粉末的分散性极其优良,而不遵从这一规律。相反地,辊压前容量最低的[SBR]为50%和70%的电极具有最高容量,这应当与它们在辊压后显示的最佳孔隙率相关。

此外,Lim等[27]报道了负极浆料的微观结构对干燥过程中胶乳迁移的影响。负极浆料中的微观结构取决于CMC和石墨的比例。当CMC与石墨的比例低时,由于石墨表面上吸附的CMC的空间排斥,石墨颗粒分散在浆料中。由于在干燥期间胶乳迁移,根据浆料的微观结构所形成的膜的微观结构不同。

黏结剂的浓度和种类均会影响浆料的流变性能和微观结构。Lim等[33]研究了SBR, CMC黏结剂对石墨负极浆料三种体系流变性的影响。对于石墨-SBR体系,不含SBR的石墨颗粒浆料存在着屈服行为、在低剪切应力下黏度保持恒定,表明浆料显示出类似固体的行为。经过某一临界点之后黏度急剧下降,该临界点即为屈服应力[34]。另外,G′>G″,且模量保持频率独立性。这一特性是由石墨颗粒的疏水性使其在水溶液中聚集,形成凝胶结构所导致[35]。加入少量SBR,黏度和模量均略微降低,表明随着SBR加入浆料中凝胶强度降低,但其凝胶结构仍然存在。当SBR含量为15%时,浆料的屈服行为消失并存在剪切变稀行为;而当G″>G′时,模量值随时间变化明显。这均表明浆料中的凝胶结构消失。石墨颗粒浆料在高浓度SBR的分散作用下形成液体特性。

当SBR含量仅为3%时,石墨之间形成聚集的网络连接,SBR颗粒被吸附在石墨颗粒表面上。当增加SBR含量到30%时,石墨颗粒表面和介质当中都存在着SBR。将SBR加入浆料中,SBR吸附在石墨表面上并降低石墨颗粒之间的吸引力。SBR本身不带电荷,但存在着携带阴离子电荷的表面活性剂;表面吸附了SBR的石墨通过静电排斥作用降低颗粒间的疏水吸引力而得到分散。

对石墨-CMC体系的流变性能研究发现,当CMC含量由0%增加至0.1%时,石墨浆料的黏度、屈服应力、模量都会有一定程度的降低,但其屈服特性仍存在,正如之前在石墨/SBR部分提到的一样。CMC是可以在水溶液中电离成钠阳离子和聚合物阴离子的聚电解质,这些离子通过静电力相互作用影响聚合物构象。CMC的特定吸附增加了石墨颗粒表面的负电荷密度和Zeta电位的大小,这为石墨颗粒在水悬浮液中的分散提供静电稳定机制。CMC由0.4%增至1.0%时的浆料的屈服现象消失并出现剪切变稀行为。此时CMC在石墨表面上的吸附量进一步增加,石墨颗粒通过吸附的CMC之间的静电排斥而得到良好的分散。由CMC水溶液的比黏度随其浓度的变化情况可知,CMC存在3个转变临阈值,可知此浓度范围内的CMC聚合物链形成缠结。此时浆料的黏度和模量随着CMC浓度的增加而增大是由形成缠结的CMC所导致的。当CMC由1.4%增加到1.7%时,浆料中屈服点再次出现,这表明此时石墨浆料中重新出现凝胶结构。

由浆料和CMC溶液的tanδ随CMC浓度的变化情况(其中tanδ=G″/G′,频率为0.1 rad/s)可知,在CMC含量低于0.28%时,tanδ<1,表明浆料为固态特性;超过该临界浓度0.28%后,tanδ>1,表明浆料呈液态特性。CMC分子被石墨颗粒表面所吸附,且吸附量随着CMC的增加而增加[27, 36],此时浆料的黏度和损耗/剪切模量都会下降。CMC含量超过下临界浓度(约为1.3%)之后,tanδ再次小于1,这与CMC体系浆料在该浓度之后再次出现屈服现象相吻合。而在下临界浓度之后浆料中出现的凝胶结构是由CMC分子形成的聚合物网络结构所导致[37]

在石墨-CMC-SBR浆料中,当仅有0.7%CMC时的浆料存在屈服现象和频率独立的模量。加入SBR后,浆料的黏度和模量均有所下降。此时CMC对石墨的吸附量非常小,SBR可以吸附在石墨表面,吸附在石墨表面上的SBR能够起到分散石墨颗粒的作用。CMC含量增至0.7%的浆料的黏度和模量几乎不随着SBR含量的增加而发生改变,SBR仅存在于石墨颗粒之间,而不是在石墨颗粒表面。这表明当浆料中同时存在CMC和SBR时,CMC比SBR更优先地吸附在石墨表面上,并且它在分散石墨颗粒中起主导作用。这与Li等[38]研究混合步骤对黏结剂性能影响的结果一致。当浆料中的CMC浓度足够高时,CMC对浆料微观结构的形成起主导作用。

2.3 导电剂对浆料流变性的影响

锂离子电池中存在离子传导和电子传导两种导电方式。导电剂越多,电子导电性越强。但体积有限的锂电池中活性材料将会减少,使得电池的容量降低。Cheon等[18]的研究表明电池容量与倍率性能和导电剂含量的对应关系是呈现相反趋势。

电极中电子传导可以用渗透理论来解释[39]。在该理论中,导电物质作为连续相,但相间存在电阻,而导电剂的形貌千变万化。因此,导电剂的形貌对于浆料性能的影响至关重要。Takeno等[40]研究了常用的乙炔黑(acetylene black, AB)、石墨以及气相生长碳纤维(vapor grown carbon fiber, VGCF)的形貌对于浆料流变性的影响。AB由纳米尺寸的碳颗粒组成,彼此连接,通过聚集和团聚作用形成簇状物;石墨呈鳞片状,VGCF为纤维状,且发生缠结。

随碳含量的增加,AB和VGCF浆料的电阻率随着碳含量的增加而降低,而石墨浆料的电阻率基本不变;含相同碳含量的AB和VGCF浆料的电阻率基本一致,且小于石墨浆料。浆料的稳流黏度与结构黏度有关;G′和G″与浆料中的分散结构有关。分析这三种导电剂浆料的流变特性发现,AB和VGCF浆料的黏度均随着含碳量的增加而升高,黏度值在低剪切速率更高,表明这两种浆料内部的网络结构随着含碳量的增加而增加,并且都是非牛顿流体。其中AB浆料中的G′大于G″这一特性表明浆料为类固体性质。此外,具有2%和3% AB的电极浆料在低角频率区域中的G′显示出的平稳区域,这一现象表明电极浆料中AB网络结构的生长。VGCF浆料的G″大于G′的结果表明VGCF浆料为类液体性质。石墨浆料的黏度值几乎不随剪切率变化,且黏度值随含碳量变化不明显,表明石墨浆料是牛顿流体;浆料内部几乎没有网络结构。造成这些差异的原因在于三种导电剂的形貌不同。点状的AB碳颗粒在浆料中会发生严重的聚集和团聚,形成彼此连接的刚性的电子传导网络;并且颗粒间的聚集和团聚作用随着碳含量增加而显著升高,从而AB浆料形成凝胶结构,其电子传输路径优良。纤维状的VGCF存在着能够包含溶剂存在的空隙,这使得VGCF浆料表现为液态特性;线状的VGCF能够发生缠结,并且缠结程度随着碳含量的增加而显著升高。从而VGCF浆料为非牛顿流体,其中有着相对较好的电子传输路径。片层状的石墨的颗粒尺寸相当大,并且是通过颗粒间点接触来形成电子传导路径。故其电子传导路径的量不随碳含量的增加而增加。经分析三种浆料制备的电极的电阻值可知,具有电子传导网络结构的电极浆料呈现的类固体特性有利于获得具有低电阻的极片。

2.4 溶剂对浆料流变性的影响

种类繁多的黏结剂的亲水性能存在差异。根据黏结剂的亲水性来选择适合的溶剂可以提高浆料的分散均匀性。溶剂的种类会对浆料的流变性产生影响。Li等[41]比较了水基浆料和有机基浆料的分散均匀性。水基浆料的溶剂和黏结剂分别为去离子水和SBR,并以CMC作为SBR的增稠剂;有机浆料中的溶剂和黏结剂分别为甲基吡咯烷酮(NMP)和聚偏氟乙烯(PVDF)。两种浆料的活性物质和导电剂均分别为LiCoO2和石墨。

由Herschel-Bulkley方程[42]σ=σy+ηγn对浆料的流变性能进行分析可知,对于水基浆料,n=0.52且σy=25.5 Pa,而有机基浆料的n=0.84且σy=9.5 Pa。相对于水基浆料,有机基浆料具有更大的n、更小的σy和较小的磁滞回线面积,可知有机基浆料的分散性更好,该结果从有机基浆料具有更低的G′和G″也得以体现[23-24]。而水基浆料中的G′对频率更低依赖性则表明该浆料呈现出的结构更加偏向于固体状。水基浆料的G′>G″而有机基浆料的G′<G″也表明水基浆料为弹性,而有机基浆料为黏性。

有机基浆料更好的流动性会使得该浆料中的石墨更容易与溶剂一起流到干燥电极片的顶部,从而造成电极片成分不均匀,另一方面,由水基溶剂浆料制备的电极片中成分的分布会相对更均匀,这很少在文献中有报道[41]。在有机基电极片的顶层上可观察到大量的石墨,其几乎覆盖了其他成分,而在其底层发现石墨含量很少。对于水基电极片,顶层和底层的石墨含量之间的差异不太明显。主要是因为有机浆料的低黏度和高流动性使得石墨在干燥过程中重新排列。并且有机基电极片的成分不均匀分布会使其电阻和充电放电效率方面的性能比水基电极的性能差。

在电极的电学和电化学性能方面,未辊压的有机基电极因其黏结剂分布不均匀、电阻高,导致对应电池的电压平台相对更低。辊压后,有机基电极的电池显示出比具有水基电极的电池更大的平台电压位移,这表明辊压阶段对于有机基电极的电化学性质尤其重要。此外,溶剂含量对浆料的流动特性和分散也有着十分重要的影响。Ligneel等[44]研究发现:当溶剂浓度低于最佳浓度时,浆料表现出屈服应力,可抑制流动并防止内部各组分均匀分布;溶剂浓度高于最佳浓度时,钒酸锂(Li1,1V3O8)和炭黑颗粒在低黏度浆料中发生沉降。

溶剂浓度较高的浆料分散体有着很低的屈服应力并表现出牛顿行为,溶剂浓度相对较低的浆料有着更高的屈服应力并表现出剪切变稀行为。这是典型的絮凝分散体浆料,其中存在于颗粒之间的弱吸引力形成了絮凝物的颗粒簇。超过临界浓度时,絮凝物在整个浆料体系中相互连接,从而形成薄弱的网络[44]。屈服应力便是浆料中存在网络结构的体现。随着溶剂浓度的降低,整个浆料系统的连通性和其屈服应力都会增加。相反,在稀释的浆料分散体中,絮凝物以独立个体存在,未能形成网络结构,浆料保持液体特性,且无屈服应力。

已有报告研究了絮凝分散体浆料的沉降与其浓度和容器尺寸之间的关系[45],发现絮凝物具有一定的机械强度,故能在由弱剪切力和重力沉降所导致的碰撞中保持其特性。而在低剪切速率下,絮凝物十分容易聚集形成絮状物簇,这些絮凝物可延伸到容器壁并使得分散体浆料具有塑性和类固体性质。对于稀释的分散体浆料,其中的絮凝物或絮凝物簇作为单独的单元而不是链或网络发生沉降,并且浆液表面和上清液之间的距离Y(t)随时间线性降低。当溶剂含量较低时,其中的絮凝物沉降为连贯的网络,且初始沉降速率(Y(t)曲线的斜率)非常低,然后随着时间的推移而增加[45]。Ligneel等[44]的研究发现,对于溶剂浓度高于0.004 mL/mg的所有浆料,其行为明显“稀释”分散,并与其流变学测量结果中没有明显屈服应力的结果一致。相反,在溶剂浓度为0.004 mL/mg的浆料中几乎没有检测到沉降,因为浆料中的颗粒已经形成具有较强的屈服应力的连贯网络结构。

颗粒之间的弱吸引力有利于抵抗由最重的活性材料和导电剂附聚物产生的集体沉降。对于所有固液分散体而言,颗粒间吸引相互作用的发生并不普遍,但这却是低浓度和非极性溶剂中的悬浮浆料的常见特征。相反,在极性溶剂中,浆料的分散颗粒通常通过静电排斥力达到稳定,但却很可能使得较重颗粒和较轻颗粒之间发生分离。

2.5 分散添加剂对浆料流变性的影响

分散添加剂在浆料的制备过程中对颗粒团簇的分布状态有着重要的影响。Bitsch等[46]提出了一种通过毛细管力来控制浆料流变性能的概念。在浆料中采用CMC水溶液作为溶剂,加入少量的与水不相溶的正辛醇,利用CMC水溶液与正辛醇对浆料内部固体颗粒间接触角的不同,使得浆料内部产生毛细管力,进而控制浆料的流变性能和悬浮稳定性。

石墨颗粒、水和正辛醇三者之间的三相接触角小于90°,正辛醇会优先润湿石墨颗粒,形成贯穿整个浆料体系(sample-spanning)的网络结构。如图 3(a)所示,没有添加正辛醇和添加极少量的正辛醇的悬浮液像稀悬浮液一样扩散。正辛醇含量的继续增大导致浆料的纹理发生剧烈变化并产生似糊状的行为,这是因为正辛醇所产生的毛细管力引起的粒子网络(sample-spanning),导致低剪切下的黏度急剧增加。随着正辛醇添加量进一步增大,悬浮液变得越来越凝胶状或糊状,这意味着其沉降稳定性得到改善。

图 3 不同含量正辛醇下浆料的流变特性图[46] (a)负极浆料在不同含量正辛醇下的特性(固含量φtotal为20%(体积分数,下同)); (b)黏度vs剪切速率曲线;(c)低剪切黏度曲线(带误差棒的符号);(d)含有2%正辛醇的浆料和不含正辛醇的浆料在恒定固体部分(固含量为20%)下的储存和损耗模量 Fig. 3 Rheological properties of slurries under different 1-octanol contents[46] (a)characteristic of anode slurries with solid content of 20% (volume fraction, the same below) under different 1-octanol contents; (b)viscosity curves vs shear rate; (c)low shear viscosity curves (symbols with error bars); (d) storage and loss modulus for the slurry containing 2% 1-octanol and the slurry without 1-octanol at a constant solid content (20%)

浆料黏度随着固含量的增加而上升,且都存在着剪切变稀行为(图 3(b))。向悬浮液中加入2%的正辛醇(secondary fluid, sec.fluid)会形成由毛细力引起的强网络结构,从而导致低剪切速率下的黏度会急剧增加。而在高剪切速率下,毛细管网络被破坏,故此时这两类浆料的黏度是相似的。低剪切速率下的黏度随着正辛醇含量的增加而急速上升。含0.5%正辛醇的浆料达到低剪切黏度的平台值,表明此时网络形成完成。进一步添加正辛醇不会改变结构和流动性质。在无正辛醇的浆料中,模量具有频率依赖性,并且G″>G′。该浆料为良好分散的溶胶[21]。添加2%正辛醇后,浆料的模量呈现出频率无关性,且G″占据主导,即浆料表现出凝胶状行为。加了正辛醇的电极边缘形状平缓很多,并且厚度增加得更快,主要是因为低剪切区域中的高黏度值阻止了由重力或表面张力引起的扩散和流动,因此获得良好的轮廓精度。