[1] |
SINGH A K, SHISHKIN A, KOPPEL T, et al. A review of porous lightweight composite materials for electromagnetic interference shielding[J]. Composites Part B: Engineering, 2018, 149: 188-197. DOI:10.1016/j.compositesb.2018.05.027 |
|
[2] |
YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials, 2020, 32(9): 1906769. DOI:10.1002/adma.201906769 |
|
[3] |
CAO M S, CAI Y Z, HE P, et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 359: 1265-1302. DOI:10.1016/j.cej.2018.11.051 |
|
[4] |
YOUSEFI N, SUN X, LIN X, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2014, 26(31): 5480-5487. DOI:10.1002/adma.201305293 |
|
[5] |
CHEN Z, XU C, MA C, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2013, 25(9): 1296-1300. DOI:10.1002/adma.201204196 |
|
[6] |
WEN B, CAO M, LU M, et al. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Advanced Materials, 2014, 26(21): 3484-3489. DOI:10.1002/adma.201400108 |
|
[7] |
SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides(MXenes)[J]. Science, 2016, 353(6304): 1137-1140. DOI:10.1126/science.aag2421 |
|
[8] | |
|
[9] |
CHEN H, WEN Y, QI Y, et al. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength[J]. Advanced Functional Materials, 2020, 30(5): 1906996. DOI:10.1002/adfm.201906996 |
|
[10] |
ZHANG J, KONG N, UZUN S, et al. Scalable manufacturing of free-standing, strong Ti 3C 2Tx MXene films with outstanding conductivity[J]. Advanced Materials, 2020, 32(23): 2001093. DOI:10.1002/adma.202001093 |
|
[11] |
FAN Z, WANG Y, XIE Z, et al. A nanoporous MXene film enables flexible supercapacitors with high energy storage[J]. Nanoscale, 2018, 10(20): 9642-9652. DOI:10.1039/C8NR01550C |
|
[12] |
LIANG X, GARSUCH A, NAZAR L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2015, 54(13): 3907-3911. DOI:10.1002/anie.201410174 |
|
[13] |
ZHAO L, DONG B, LI S, et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-borganic frameworks and Ti 3C 2Tx nanosheets for electrocatalytic oxygen evolution[J]. ACS Nano, 2017, 11(6): 5800-5807. DOI:10.1021/acsnano.7b01409 |
|
[14] |
LI R, ZHANG L, SHI L, et al. MXene Ti 3C 2: an effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): 3752-3759. DOI:10.1021/acsnano.6b08415 |
|
[15] | |
|
[16] |
LING Z, REN C E, ZHAO M, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences, 2014, 111(47): 16676-16681. DOI:10.1073/pnas.1414215111 |
|
[17] |
ALHABEB M, MALESKI K, MATHIS T S, et al. Selective etching of silicon from Ti 3SiC 2(MAX) to obtain 2D titanium carbide(MXene)[J]. Angewandte Chemie International Edition, 2018, 57(19): 5444-5448. DOI:10.1002/anie.201802232 |
|
[18] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2[J]. Advanced Materials, 2011, 23(37): 4248-4253. DOI:10.1002/adma.201102306 |
|
[19] |
MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013, 4(1): 1716. DOI:10.1038/ncomms2664 |
|
[20] |
LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505. DOI:10.1126/science.1241488 |
|
[21] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. DOI:10.1038/nature13970 |
|
[22] |
SHUCK C E, SARYCHEVA A, ANAYEE M, et al. Scalable synthesis of Ti 3C 2Tx MXene[J]. Advanced Engineering Materials, 2020, 22(3): 1901241. DOI:10.1002/adem.201901241 |
|
[23] |
HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7): 2374-2381. DOI:10.1021/cm500641a |
|
[24] |
LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti 3C 2Tx( T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119. DOI:10.1002/anie.201800887 |
|
[25] |
YANG S, ZHANG P, WANG F, et al. Fluoride-free synthesis of two-dimensional titanium carbide(MXene) using a binary aqueous system[J]. Angewandte Chemie International Edition, 2018, 57(47): 15491-15495. DOI:10.1002/anie.201809662 |
|
[26] |
XIE X, XUE Y, LI L, et al. Surface Al leached Ti 3AlC 2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale, 2014, 6(19): 11035-11040. DOI:10.1039/C4NR02080D |
|
[27] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737. DOI:10.1021/jacs.9b00574 |
|
[28] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8): 894-899. DOI:10.1038/s41563-020-0657-0 |
|
[29] |
TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti 3C 2 and Ti 3C 2X2( X = F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40): 16909-16916. DOI:10.1021/ja308463r |
|
[30] |
WANG X, SHEN X, GAO Y, et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti 3C 2X[J]. Journal of the American Chemical Society, 2015, 137(7): 2715-2721. DOI:10.1021/ja512820k |
|
[31] |
WANG H W, NAGUIB M, PAGE K, et al. Resolving the structure of Ti 3C 2Tx MXenes through multilevel structural modeling of the atomic pair distribution function[J]. Chemistry of Materials, 2016, 28(1): 349-359. DOI:10.1021/acs.chemmater.5b04250 |
|
[32] |
HOPE M A, FORSE A C, GRIFFITH K J, et al. NMR reveals the surface functionalisation of Ti 3C 2 MXene[J]. Physical Chemistry Chemical Physics, 2016, 18(7): 5099-5102. DOI:10.1039/C6CP00330C |
|
[33] |
MIRANDA A, HALIM J, BARSOUM M W, et al. Electronic properties of freestanding Ti 3C 2Tx MXene monolayers[J]. Applied Physics Letters, 2016, 108(3): 033102. DOI:10.1063/1.4939971 |
|
[34] |
LI S, TUO P, XIE J, et al. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution[J]. Nano Energy, 2018, 47: 512-518. DOI:10.1016/j.nanoen.2018.03.022 |
|
[35] |
何朋, 蔡永珠, 曹茂盛. 剥离的碳化钛(d-Ti 3C 2Tx)纳米片吸波性能[J]. 表面技术, 2020, 49(2): 75-80. HE P, CAI Y Z, CAO M S. Microwave absorption properties of delaminated titanium carbide(d-Ti 3C 2Tx) nanosheeet[J]. Surface Technology, 2020, 49(2): 75-80. |
|
[36] | |
|
[37] |
AL-SALEH M H, SAADEH W H, SUNDARARAJ U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study[J]. Carbon, 2013, 60: 146-156. DOI:10.1016/j.carbon.2013.04.008 |
|
[38] |
ZHANG H B, YAN Q, ZHENG W G, et al. Tough graphene-bpolymer microcellular foams for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2011, 3(3): 918-924. |
|
[39] |
AMELI A, NOFAR M, WANG S, et al. Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11091-11100. |
|
[40] |
吕通, 张恩爽, 原因, 等. 大片单层低缺陷MXene的制备及其膜材料的电磁屏蔽性能[J]. 高等学校化学学报, 2019, 40(10): 2059-2066. LV T, ZHANG E S, YUAN Y, et al. Preparation of large-size single layer MXene with low defect and electromagnetic shielding performance of MXene film[J]. Chemical Journal of Chinese Universities, 2019, 40(10): 2059-2066. DOI:10.7503/cjcu20190207 |
|
[41] |
LIU Z, ZHANG Y, ZHANG H, et al. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2020, 8(5): 1673-1678. DOI:10.1039/C9TC06304H |
|
[42] |
CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano, 2018, 12(5): 4583-4593. DOI:10.1021/acsnano.8b00997 |
|
[43] |
ZHOU B, ZHANG Z, LI Y, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4895-4905. |
|
[44] |
CAO W, MA C, TAN S, et al. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding[J]. Nano-Micro Letters, 2019, 11(72): 276-292. DOI:10.1007%2Fs40820-019-0304-y |
|
[45] |
LUO J, ZHAO S, ZHANG H, et al. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding[J]. Composites Science and Technology, 2019, 182: 107754. DOI:10.1016/j.compscitech.2019.107754 |
|
[46] |
CHOI G, SHAHZAD F, BAHK Y M, et al. Enhanced terahertz shielding of MXenes with nano-metamaterials[J]. Advanced Optical Materials, 2018, 6(5): 1701076. DOI:10.1002/adom.201701076 |
|
[47] |
VURAL M, PENA FRANCESCH A, BARS POMES J, et al. Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding[J]. Advanced Functional Materials, 2018, 28(32): 1801972. DOI:10.1002/adfm.201801972 |
|
[48] |
WENG G, LI J, ALHABEB M, et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding[J]. Advanced Functional Materials, 2018, 28(44): 1803360. DOI:10.1002/adfm.201803360 |
|
[49] |
WANG Q, ZHANG H, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7): 1806819. DOI:10.1002/adfm.201806819 |
|
[50] |
LIU L, CHEN W, ZHANG H, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019, 29(44): 1905197. DOI:10.1002/adfm.201905197 |
|
[51] |
LI Y, TIAN X, GAO S, et al. Reversible crumpling of 2D Titanium carbide(MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication[J]. Advanced Functional Materials, 2020, 30(5): 1907451. DOI:10.1002/adfm.201907451 |
|
[52] |
LIU J, ZHANG H, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(38): 1702367. DOI:10.1002/adma.201702367 |
|
[53] |
FAN Z, WANG D, YUAN Y, et al. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 381: 122696. DOI:10.1016/j.cej.2019.122696 |
|
[54] |
SAMBYAL P, IQBAL A, HONG J, et al. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38046-38054. |
|
[55] |
HAN M, YIN X, HANTANASIRISAKUL K, et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption[J]. Advanced Optical Materials, 2019, 7(10): 1900267. DOI:10.1002/adom.201900267 |
|
[56] |
BIAN R, HE G, ZHI W, et al. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance[J]. Journal of Materials Chemistry C, 2019, 7(3): 474-478. DOI:10.1039/C8TC04795B |
|
[57] |
ZHAO S, ZHANG H, LUO J, et al. Highly electrically conductive three-dimensional Ti 3C 2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J]. ACS Nano, 2018, 12(11): 11193-11202. DOI:10.1021/acsnano.8b05739 |
|
[58] |
SUN R, ZHANG H, LIU J, et al. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding[J]. Advanced Functional Materials, 2017, 27(45): 1702807. DOI:10.1002/adfm.201702807 |
|