材料工程  2021, Vol. 49 Issue (4): 167-172   PDF    
http://dx.doi.org/10.11868/j.issn.1001-4381.2019.000902
0

文章信息

林珊, 袁红梅, 汪东, 陈淑卿, 章文贡, 陈礼辉
LIN Shan, YUAN Hong-mei, WANG Dong, CHEN Shu-qing, ZHANG Wen-gong, CHEN Li-hui
苯胺或邻苯二胺/YBCO杂化材料的性能
Properties of aniline or O-phenylenediamine/YBCO hybrid materials
材料工程, 2021, 49(4): 167-172
Journal of Materials Engineering, 2021, 49(4): 167-172.
http://dx.doi.org/10.11868/j.issn.1001-4381.2019.000902

文章历史

收稿日期: 2019-09-29
修订日期: 2020-06-11
苯胺或邻苯二胺/YBCO杂化材料的性能
林珊1 , 袁红梅1 , 汪东1 , 陈淑卿2 , 章文贡3 , 陈礼辉1     
1. 福建农林大学 材料工程学院, 福州 350108;
2. 中国石油四川石化有限责任公司, 四川 彭州 611930;
3. 福建师范大学 化学与材料学院, 福州 350007
摘要:采用高温固相法制备钇钡铜氧(YBCO),研磨后超声分散在无水乙醇中得纳米YBCO/乙醇溶胶,再分别掺入苯胺和邻苯二胺,浓缩后真空干燥得有机物/YBCO杂化材料。采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、X射线光电子能谱(XPS)和振动样品磁强计(VSM)研究了有机物对YBCO化学组成、物相、元素价态和磁性性能的影响。结果表明,掺入0.05%~5%(质量分数,下同)范围内的苯胺、邻苯二胺不影响YBCO的红外吸收,但显著提高了其XRD衍射峰的强度。两种杂化材料中N-Y之间的相互作用比N-Ba或N-Cu强烈,N元素含量对杂化材料中YBCO的超导转变温度Tc和磁化强度M有显著影响,N元素含量超过1%,Tc明显降低,Mmin则相应提高。
关键词苯胺    邻苯二胺    YBCO    杂化    
Properties of aniline or O-phenylenediamine/YBCO hybrid materials
LIN Shan1, YUAN Hong-mei1, WANG Dong1, CHEN Shu-qing2, ZHANG Wen-gong3, CHEN Li-hui1    
1. College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China;
2. Petro China Sichuan Petrochemical Co. Ltd., Pengzhou 611930, Sichuan, China;
3. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
Abstract: YBa2Cu3O7-δ(YBCO) bulk material prepared by high temperature solid state reaction was milled and dispersed through ultrasonic process in ethanol to prepare nanoscale YBCO/ethanol sol. Then it was mixed with aniline or O-phenylenediamine and the organic/YBCO hybrid materials were obtained after concentration and being dried in vacuum. The influence of the organic on YBCO's chemical composition, phase, elemental valence and magnetic properties was studied by Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and vibrating sample magnetometer(VSM). The results show that the infrared absorption of YBCO is not affected by the aniline or O-phenylenediamine within 0.05%-5%(mass fraction, the same below), however the intensity of the XRD peaks is significantly increased. The interaction between the N atom in aniline or O-phenylenediamine and the Y atom in YBCO is stronger compared with N-Ba or N-Cu. The superconducting transition temperature Tc and magnetization M of YBCO are significantly affected by the content of N element in the hybrid materials. When the content of N element exceeds 1%, Tc is significantly decreased and Mmin is increased accordingly.
Key words: aniline    O-phenylenediamine    YBCO    hybrid    

超导YBa2Cu3O7-δ(YBCO)因其高转变温度及在电流密度、磁场和化学稳定性等方面的突出特性而备受重视[1-2]。YBCO是目前研究中最有应用前景的铜酸盐[2-4],其组分无毒、无挥发性,各向异性较小,制备成本相对较低,且能够形成单相,已应用在电力传输[5-7]、变压器、电动机和发电机等[8-10]。在过去的十年中,纳米尺度的超导体作为重要的功能材料引起了研究者们极大的关注[11-16],已有大量研究采用各种方法如静电纺丝[17]、溶胶-凝胶/模板法[18]、脉冲激光蒸发法[19]和球磨法[20]等来制备不同形态的纳米YBCO。YBCO纳米化后,其超导特性会表现出与传统块材和薄膜不一样的性状,对超导理论和实验研究具有重要意义[8-9, 21-22]。超声波的空化气泡在瞬间能产生局部强热(≈5000 K)、高压(≈50 MPa)、高速急流(≈400 km/h)及强烈的局部剪切等极端环境,利用其能量特性和频率特性,在颗粒与周围流体之间的界面上施加剪切力将物质粉碎分散,可制备粒度分布更窄、高比表面积的纳米材料[23-25]

通过化学掺杂引入第二相[20]来改变YBCO的超导微结构、提高其超导性能一直是研究热点。液体掺杂剂比固体[5-6]可更均匀地分散在超导矩阵中,且能防止样品在制备过程中的团聚,因此获得越来越多的关注。良好的液体掺杂剂应不损害YBCO颗粒间的连接且应难挥发、黏度低,可均匀地分布在前体粉末中。苯胺(C6H7N)及其衍生物类液体能满足上述要求,Wang等[6]发现苯胺掺杂和高能球磨可大大提高二硼化镁(MgB2)超导体的电磁性能,但有机物对YBCO特别是纳米YBCO结构和性能的影响,至今尚未见报道。

本研究中先采用高温固相法制备YBCO,再将其研磨后在无水乙醇中超声分散,获得纳米YBCO/乙醇溶胶。在该溶胶中掺入苯胺或邻苯二胺,真空干燥得到有机物/YBCO杂化材料,并对其化学组成、结晶结构和磁性性质等相关性能进行了研究。

1 实验材料与方法 1.1 试剂

碳酸钡(CP):松江泗联化工厂;氧化铜(AR):广东西陇化工厂;氧化钇(AR):福建师范大学化学系;邻苯二胺(CP):国药集团化学试剂有限公司;苯胺(AR):天津市福晨化学试剂厂;无水乙醇(AR):上海振兴化工一厂,经二次蒸馏。

1.2 苯胺和邻苯二胺掺杂YBCO材料的制备 1.2.1 YBCO的制备

所有原料均在100 ℃干燥24 h。将Y2O3,BaCO3,CuO按Y∶Ba∶Cu=1∶2∶3化学摩尔比精确称量,充分研磨均匀,压片后置于管式炉内,空气中900 ℃下烧结12 h,之后随炉冷却至室温。按照传统高温固相法将YBCO片状样品二次研磨压片、烧结后得YBCO片材(编号:样品a)[15]

1.2.2 苯胺或邻苯二胺/YBCO杂化材料的制备

充分研磨样品a,于无水乙醇中采用超声波细胞粉碎机进行超声分散,得稳定的YBCO/乙醇溶胶b,将苯胺、邻苯二胺分别掺入上述溶胶中。苯胺和邻苯二胺的掺入量分别为5%(质量分数,下同),3%,1%,0.5%,0.3%,0.1%,0.05%,干燥后分别得到苯胺/YBCO杂化材料样品c-0,c-1,c-2,c-3,c-4,c-5,c-6和邻苯二胺/YBCO杂化材料样品d-0, d-1, d-2, d-3, d-4, d-5, d-6。

1.3 测试与表征

傅里叶红外光谱(FT-IR)分析:采用AVATAT360型傅里叶红外光谱仪。分辨率4 cm-1,扫描次数64,样品与KBr质量比=1∶100;X射线衍射(XRD)分析:采用X’Pert-MPD型XRD测试,测试参数为Kα射线,Cu靶,λ为0.15418 nm,40 kV,40 mA,角度范围为20°~60°。X射线光电子能谱(XPS)分析:采用250型X射线光电子能谱仪(Al靶,Kα=1486.6 eV)测试。磁性测试:采用VSM-Versalab型振动样品磁强计(VSM)测定样品的磁化强度-温度(M-T)曲线。

2 结果与分析 2.1 FT-IR光谱分析

图 1是样品a, b, c-0和d-0的FT-IR图。样品a, b, c-0和d-0均在1398, 3440 cm-1和1621 cm-1有明显吸收峰,分别归属于吸附水O—H的伸缩振动、弯曲振动和CO32-的非对称伸缩振动,可能是空气中少量水分和CO2侵蚀到YBCO表面导致的吸收峰[26]。样品a中Y—O, Ba—O, Cu—O的共同振动吸收峰在576.55 cm-1处,而样品b中该吸收峰出现宽化,且蓝移至584.35 cm-1处。据本课题组的前期研究结果认为,经超声波空化作用后YBCO/乙醇溶胶中的YBCO为纳米级[15],因而纳米材料的尺寸分布效应和界面效应导致了样品b中无机基团(Y—O, Ba—O, Cu—O)伸缩振动吸收峰的宽化和蓝移[16]。样品c-0,d-0中均未发现有机物官能团的明显特征吸收峰。可能原因是苯胺和邻苯二胺中的C—N伸缩振动(1340 cm-1左右)、N—H弯曲振动(1650 cm-1左右)和伸缩振动(3400 cm-1左右)及苯环中C-C骨架振动(1600 cm-1左右)的特征吸收峰[27-28],分别与样品中吸附水和CO2的特征吸收峰相互叠加。此外也可能是有机物掺入量少,且红外测试中样品与KBr质量比为1∶100,导致有机物官能团的红外吸收不明显。

图 1 样品的FT-IR谱图 (a)样品a,b和c-0;(b)样品a,b和d-0 Fig. 1 FT-IR spectra of the samples (a)sample a, b and c-0;(b)sample a, b and d-0
2.2 XRD分析

样品a,b,c-0和d-0的XRD谱图如图 2所示。由图可见,高温固相反应法得到的YBCO样品a,其衍射峰均为YBCO超导相的特征衍射,对应晶面分别为(003), (013), (103), (005), (113), (006), (200), (116)和(213)[29]。样品b较样品a的XRD图衍射峰强度有所提高,可能是超声促进了样品a与空气中氧气的结合,提高了YBCO的结晶强度[15]。对比a, b, c-0和d-0的XRD衍射图,发现YBCO/有机物杂化材料无新的特征衍射峰,表明该掺入只是物理掺入,但衍射峰的强度显著提高,可见有机物有利于诱导其结晶。

图 2 样品的XRD谱图 (a)样品a,b和c-0;(b)样品a,b和d-0 Fig. 2 XRD patterns of the samples (a)samples a, b and c-0;(b)samples a, b and d-0
2.3 XPS测试

对样品进行XPS测试,结果示于图 3。样品a, b, c-0, d-0中Y3d, Ba3d, Cu2p, O1s和N1s的精细谱分别对应图 3(a)(b)(c)(d)(e)。谱图中样品b比a的XPS芯能级结合能更高,因为超声后得到的纳米YBCO平均颗粒尺寸较小,其表面原子所占比例大,因此表面能高且化学性质活泼[16]。也可归结为原子外弛豫效应的差异,在光电离时,与Koopman理论假设[30-31]不同,原子内外的电荷分布都会出现重排。纳米氧化物的粒径小,可贡献于极化作用的邻近原子很少,原子外的弛豫能更小。俄歇跃迁的终态有两个空穴,其引发的电子外弛豫比光电子发射引发的更强,所以动能位移更大。

图 3 样品a,b,c-0和d-0的XPS谱图 (a)Y3d谱; (b)Ba3d谱; (c)Cu2p谱; (d)O1s谱; (e)c-0,d-0的N1s谱 Fig. 3 XPS spectra of samples a, b, c-0 and d-0 (a)Y3d spectrum; (b)Ba3d spectrum; (c)Cu2p spectrum; (d)O1s spectrum; (e)N1s spectra of c-0, d-0

对比b, c-0, d-0的Y3d, Ba3d, Cu2p, O1s和N1s的精细谱,可见Y3d, Ba3d, Cu2p, O1s的结合能均有改变。原子周围环境的改变影响电子云的屏蔽效应,从而改变结合能。由图 3中可见O1s向低结合能方向分别移动了0.85 eV和0.51 eV。与Y3d相比,Ba3d,Cu2p的谱峰变化不明显。Y3d的谱峰不规则且变宽减弱,同时向低结合能移动,表明Y-N间的相互作用强于Ba-N或Cu-N间的相互作用,N原子上的孤对电子更多地转移至Y3+的外层空轨道上,故其外层电荷密度增加,而内层电子结合能下降。可见c-0,d-0样品中Y,Ba,Cu和O原子的周围环境不同于纯YBCO,证实了Y-N间的相互作用。

2.4 磁性测试

图 4是外加磁场为39.8×104 A/m下样品a,b,c-0~c-6的磁化强度随温度变化曲线图。由图中可见样品a在91.59 K处有一抗磁-顺磁转变,对应超导转变,与文献[32-34]结果一致。更低温度区间内磁化强度随温度的增加而降低,可能是磁性杂质或自旋-玻璃引起的[35-36]。经过超声后的YBCO样品b,超导转变温度Tc低于样品a。表 1列出了样品a,b,c-0~c-6的Tc(K)及最小磁化强度Mmin(A·m2·kg-1)数据。图 5是外加磁场为39.8×104A/m下样品a,b,d-0~d-6的磁化强度随温度变化曲线图。表 2是以上样品相应的Tc(K) 及Mmin(A·m2·kg-1)数据。结合图表可见,掺入不同量的苯胺并未显著影响YBCO的TcM。掺入邻苯二胺时,当掺入量低于3%时,对TcM的影响不明显,当掺入量达5%(样品d-0)时,Tc显著降低,降为60.33 K,对应Mmin为-0.0552(A·m2·kg-1)。结合XPS分析可知,苯胺、邻苯二胺N上的孤对电子转移到Y3+的外层空轨道上,增加了其外层电荷密度而影响YBCO的Tc和磁化强度M。虽然有机物的掺入量相同,但各有机物中N元素在样品中的含量仍较小,除样品d-0外,其他样品中N元素含量均不超过1%,故对YBCO的TcM的影响不明显。当N元素含量超过1%,样品的Tc明显降低,Mmin则相应提高,可见有机物掺入后样品中N元素含量对YBCO的TcM有显著影响。

图 4 样品a, b, c-0, c-1, c-2, c-3, c-4, c-5和c-6的磁化强度随温度变化曲线 Fig. 4 Magnetization-temperature curves of samples a, b, c-0, c-1, c-2, c-3, c-4, c-5 and c-6
表 1 a, b, c-0, c-1, c-2, c-3, c-4, c-5和c-6样品TcMmin Table 1 Tc and Mmin of samples a, b, c-0, c-1, c-2, c-3, c-4, c-5 and c-6
Sample Tc/K Mmin/(A·m2·kg-1)
a 91.59 -0.3764
b 88.66 -0.2897
c-0 91.68 -0.3343
c-1 89.36 -0.2766
c-2 89.19 -0.2105
c-3 89.15 -0.2177
c-4 89.05 -0.2976
c-5 90.21 -0.1940
c-6 90.15 -0.2721
图 5 样品a, b, d-0, d-1, d-2, d-3, d-4, d-5和d-6的磁化强度随温度变化曲线 Fig. 5 Magnetization-temperature curves of samples a, b, d-0, d-1, d-2, d-3, d-4, d-5 and d-6
表 2 a, b, d-0, d-1, d-2, d-3, d-4, d-5和d-6样品TcMmin Table 2 Tc and Mmin of samples a, b, d-0, d-1, d-2, d-3, d-4, d-5 and d-6
Sample Tc/K Mmin/(A·m2·kg-1)
a 91.59 -0.3764
b 88.66 -0.2897
d-0 60.33 -0.0552
d-1 82.82 -0.1597
d-2 88.83 -0.2132
d-3 88.80 -0.2700
d-4 88.84 -0.2810
d-5 91.77 -0.3075
d-6 91.76 -0.3138
3 结论

(1) 掺入0.05%~5%的苯胺或邻苯二胺不影响YBCO的红外吸收,但有利于诱导其结晶,显著提高了XRD衍射峰的强度。

(2) 苯胺或邻苯二胺中N与YBCO中Y之间的相互作用比N-Ba或N-Cu强烈,N上的孤对电子更多地转移到Y3+的外层空轨道上。有机物掺入后样品中N元素含量对YBCO的超导转变温度Tc和磁化强度M有显著影响,N含量超过1%,Tc明显降低,Mmin则相应提高。

参考文献(References)
[1]
ZHANG H D, DING F Z, GU H W, et al. Fabrication of high-Jc BaTiO3-doped YBa2Cu3O7-d thin films by the low-fluorine TFA-MOD approach[J]. Journal of Alloys and Compounds, 2016, 664: 5-10. DOI:10.1016/j.jallcom.2015.12.220
[2]
OPHERDEN L, SIEGER M, PAHLKE P, et al. Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates[J]. Scientific Reports, 2016, 6: 1-10. DOI:10.1038/s41598-016-0001-8
[3]
LI G Z, DONG L, DENG X Y. Significant improvement of superconducting properties in nano-NiFe2O4-doped Y-Ba-Cu-O single-grain superconductor[J]. Journal of the American Ceramic Society, 2016, 99(2): 388-391. DOI:10.1111/jace.14035
[4]
BEN SALEM M K, ALMESSIERE M A, AL-OTAIBI A L, et al. Effect of SiO2 nano-particles and nano-wires on microstructure and pinning properties of YBa2Cu3O7-d[J]. Journal of Alloys and Compounds, 2016, 657: 286-295. DOI:10.1016/j.jallcom.2015.10.077
[5]
HWANG S M, SUNG K, CHOI J H, et al. O-free polyacrylonitrile doping to improve the Jc(B) and Hc2 of MgB2 wires[J]. Physica: C, 2010, 470(20): 1430-1434. DOI:10.1016/j.physc.2010.05.130
[6]
WANG C D, WANG D L, ZHANG X P, et al. Aniline doping and high energy milling to greatly enhance electromagnetic properties of magnesium diboride superconductors[J]. Physica: C, 2013, 489: 36-39. DOI:10.1016/j.physc.2013.04.010
[7]
NAKAGAWA K, HONMA T, TAKEDA K, et al. Intrinsic surface resistance of YBCO thin films under DC magnetic field[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 587-590. DOI:10.1109/TASC.2010.2086042
[8]
ARPAIA R, NAWAZ S, LOMBARDI F, et al. Improved nanopatterning for YBCO nanowires approaching the depairing current[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 1101505. DOI:10.1109/TASC.2013.2247454
[9]
CURTZ N, KOLLER E, ZBINDEN H, et al. Patterning of ultrathin YBCO nanowires using a new focused-ion-beam process[J]. Superconductor Science and Technology, 2010, 23(4): 24-37.
[10]
NEMES N M, VISANI C, LEON C, et al. Magnetic memory based on La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3 ferromagnet/superconductor hybrid structures[J]. Applied Physics Letters, 2010, 97(3): 032501. DOI:10.1063/1.3464960
[11]
UMEDA M, KATO M. Transition temperature enhancement of nano-structured superconductors: shape dependence and effects of Cooper pair distribution[J]. Physica: C, 2019, 560: 45-66. DOI:10.1016/j.physc.2019.02.012
[12]
LI G Z, WANG M, YANG W M. Enhanced superconducting properties in infiltration processed Y-Ba-Cu-O single-grain superconductor with nano-sized pinning centers[J]. Journal of Alloys and Compounds, 2015, 649: 559-563. DOI:10.1016/j.jallcom.2015.07.117
[13]
SHARMA S, AMALADASS E P, SHARMA N, et al. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films[J]. Physica: B, 2017, 514: 89-95. DOI:10.1016/j.physb.2017.03.044
[14]
KASHIWAGI M, KATO M. Spatial dependence of odd-frequency spin-triplet superconducting order parameter in nano-sized s-wave superconductors under a magnetic field[J]. Physics Procedia, 2015, 65: 33-36. DOI:10.1016/j.phpro.2015.05.105
[15]
林珊, 陈淑卿, 章文贡, 等. 超声法制备金掺杂的纳米YBa2Cu3O7材料研究[J]. 华中师范大学学报, 2011, 45(1): 79-83.
LIN S, CHEN S Q, ZHANG W G, et al. Preparation of YBCO with nano-Au-doping by ultrasonic process[J]. Journal of Huazhong Normal University, 2011, 45(1): 79-83.
[16]
陈淑卿. 超声波法制备有机修饰纳米钇钡铜氧杂化材料研究[D]. 福州: 福建师范大学, 2009.
CHEN S Q. Study on organic-modified nano Y-Ba-Cu-O hybrid materials obtained through ultrasonic process[D]. Fuzhou: Fujian Normal University, 2009.
[17]
JASIM S E, JUSOH M A, HAFIZ M, et al. Fabrication of superconducting YBCO nanoparticles by electrospinning[J]. Procedia Engineering, 2016, 148: 243-248. DOI:10.1016/j.proeng.2016.06.595
[18]
DADRAS S, AAWANI E. Fabrication of YBCO nanowires with anodic aluminum oxide (AAO) template[J]. Physica: B, 2015, 475: 27-31. DOI:10.1016/j.physb.2015.06.016
[19]
YANG S L, ZHANG J. Deposition of YBCO nanoparticles on graphene nanosheets by using matrix-assisted pulsed laser evaporation[J]. Optics and Laser Technology, 2019, 109: 465-469. DOI:10.1016/j.optlastec.2018.08.039
[20]
COLIE M, MIHAIESCU D, SURDU A, et al. High temperature superconducting materials based on graphene/YBCO nanocomposite[J]. Materials Today: Proceedings, 2016, 3(8): 2628-2634. DOI:10.1016/j.matpr.2016.06.006
[21]
ALIKHANZADEH-ARANI S, SALAVATI-NIASARI M, ALMASI-KASHI M. Influence of the utilized precursors on the morphology and properties of YBa2Cu3O7-y superconducting nanostructures[J]. Physica: C, 2013, 488: 30-34. DOI:10.1016/j.physc.2013.02.007
[22]
SHEN Z, HU Y, FEI L, et al. Photocatalytically active YBa2Cu3O7-x nanoparticles synthesized via a soft chemical route[J]. Journal of Nanomaterials, 2015, 1: 1-5.
[23]
GUO Y Q, YAHG X G, LI G, et al. Effect of ultrasonic intensification on synthesis of nano-sized particles with an impinging jet reactor[J]. Powder Technology, 2019, 354: 218-230. DOI:10.1016/j.powtec.2019.05.066
[24]
MODARRES-GHEISARI S M M, GAVAGSAZ-GHOACHANI R, MALAKI M, et al. Ultrasonic nano-emulsification-a review[J]. Ultrasonics Sonochemistry, 2019, 52: 88-105. DOI:10.1016/j.ultsonch.2018.11.005
[25]
SRIVASTAVA N, CHAUDHARI G P. Microstructural evolution and mechanical behavior of ultrasonically synthesized Al6061-nano alumina composites[J]. Materials Science and Engineering: A, 2018, 724: 199-207. DOI:10.1016/j.msea.2018.03.092
[26]
FETISOV A V, KOZHINA G A, ESTEMIROVAL S K, et al. XPS study of mechanically activated YBa2Cu3O6+δ and NdBa2Cu3O6+δ[J]. Journal of Spectroscopy, 2013, 1-13.
[27]
李美超, 胡佳琦, 刘艳娜, 等. 红外光谱法研究苯胺和环氧丙烷的共聚机理及共聚物的表征[J]. 高等学校化学学报, 2008, 29(8): 1544-1548.
LI M C, HU J Q, LIU Y N, et al. Studies on the mechanism of copolymerization of aniline and propylene oxide and characterization of copolymer via FTIR technique[J]. Chemical Journal of Chinese Universities, 2008, 29(8): 1544-1548. DOI:10.3321/j.issn:0251-0790.2008.08.010
[28]
包建军, 成煦, 何其佳, 等. 热处理过程中聚苯胺的结构变化[J]. 高分子材料科学与工程, 2004, 20(5): 121-124.
BAO J J, CHENG X, HE Q J, et al. A study of polyaniline structure change undergoing heat treatment[J]. Polymeric Materials Science and Engineering, 2004, 20(5): 121-124.
[29]
BRANESCU M, VAILIONIS A, GARTNER M, et al. Spectroscopic and X-ray diffraction study of high Tc epitaxial YBCO thin films obtained by pulsed laser deposition[J]. Applied Surface Science, 2006, 253(1): 400-404. DOI:10.1016/j.apsusc.2006.06.022
[30]
王雪, 江智渊, 蒋亚琪, 等. 高表面能晶面裸露的金属氧化物微纳米晶体的可控合成[J]. 中国科学: 化学, 2013, 12(43): 1630-1639.
WANG X, JIANG Z Y, JIANG Y Q, et al. Shape-controlled synthesis of metal oxides micro/nanocrystals enclosed by crystal facets of high surface energy[J]. Scientia Sinica: Chimica, 2013, 12(43): 1630-1639.
[31]
赵志娟, 刘芬, 邱丽美, 等. 纳米粒子尺寸效应引起的内层电子结合能位移[J]. 物理化学学报, 2008, 9(24): 1685-1688.
ZHAO Z J, LIU F, QIU L M, et al. Core level binding energy shifts caused by size effect of nanoparticles[J]. Acta Physico-chimica Sinica, 2008, 9(24): 1685-1688.
[32]
赵忠贤, 陈立泉, 杨乾声, 等. Ba-Y-Cu氧化物液氮温区的超导电性[J]. 科学通报, 1987, 6: 412-414.
ZHAO Z X, CHEN L Q, YANG Q S, et al. The superconductivity of Ba-Y-Cu oxide in the liquid nitrogen temperature zone[J]. Chinese Science Bulletin, 1987, 6: 412-414.
[33]
VOLOCHOVÁ D, PIOVAR I S, RADUŠOVSKÁ M, et al. YBCO bulk superconductors doped with gadolinium and samarium[J]. Physica: C, 2013, 494: 36-40. DOI:10.1016/j.physc.2013.04.009
[34]
STEIGER B, MARKOVISCH W, LANG W, et al. Systematic modification of electrical and superconducting properties of YBCO and nano-patterning of high-Tc superconducting thin films by light-ion irradiation[J]. Physics Procedia, 2012, 36: 508-513. DOI:10.1016/j.phpro.2012.06.075
[35]
储海峰, 李洁, 李绍, 等. Sr2CoO4-δ薄膜中的自旋玻璃态的磁性质研究[J]. 物理学报, 2010, 59(9): 6585-6592.
CHU H F, LI J, LI S, et al. Glassy magnetic behaviors in oxygen-deficient Sr2CoO4-δ films[J]. Acta Physica Sinica, 2010, 59(9): 6585-6592.
[36]
朱中华. YBCO及其复合体系的超导和磁性研究[D]. 兰州: 兰州大学, 2013.
ZHU Z H. The investigation of superconducting and magnetic properties for YBCO and its composites[D]. Lanzhou: Lanzhou University, 2013.