[1] |
LEMMON J P. Energy: reimagine fuel cells[J]. Nature, 2015, 525(7570): 447-449. DOI:10.1038/525447a |
|
[2] |
CANO Z P, BANHAM D, YE S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018, 3(4): 279-289. DOI:10.1038/s41560-018-0108-1 |
|
[3] |
O'HAYRE R, CHA S W, COLELLA W, et al. Fuel cell fundamentals. Chapter 1: introduction[M]. New Jersey: John Wiley & Sons, Inc, 2016: 1-24.
|
|
[4] |
WILBERFORCE T, ALASWAD A, PALUMBO A, et al. Advances in stationary and portable fuel cell applications[J]. International Journal of Hydrogen Energy, 2016, 41(37): 16509-16522. DOI:10.1016/j.ijhydene.2016.02.057 |
|
[5] | |
|
[6] |
KRAYTSBERG A, EIN-ELI Y. Review of advanced materials for proton exchange membrane fuel cells[J]. Energy & Fuels, 2014, 28(12): 7303-7330. |
|
[7] |
ZHANG H, SHEN P K. Advances in the high performance polymer electrolyte membranes for fuel cells[J]. Chemical Society Reviews, 2012, 41(6): 2382-2394. DOI:10.1039/c2cs15269j |
|
[8] |
ZHANG L, CHAE S R, HENDREN Z, et al. Recent advances in proton exchange membranes for fuel cell applications[J]. Chemical Engineering Journal, 2012, 204/206: 87-97. DOI:10.1016/j.cej.2012.07.103 |
|
[9] |
JIANG S P. Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(21): 7637-7655. DOI:10.1039/C4TA00121D |
|
[10] |
BRANCO C M, SHARMA S, DE CAMARGO FORTE M M, et al. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells[J]. Journal of Power Sources, 2016, 316: 139-159. DOI:10.1016/j.jpowsour.2016.03.052 |
|
[11] |
DUPUIS A C. Proton exchange membranes for fuel cells operated at medium temperatures: materials and experimental techniques[J]. Progress in Materials Science, 2011, 56(3): 289-327. DOI:10.1016/j.pmatsci.2010.11.001 |
|
[12] |
MORANDI C G, PEACH R, KRIEG H M, et al. Novel imidazolium-functionalized anion-exchange polymer PBI blend membranes[J]. Journal of Membrane Science, 2015, 476: 256-263. DOI:10.1016/j.memsci.2014.11.049 |
|
[13] |
FECHETE R, DEMCO D E, ZHU X, et al. Water states and dynamics in perfluorinated ionomer membranes by 1H one- and two-dimensional NMR spectroscopy, relaxometry, and diffusometry[J]. Chemical Physics Letters, 2014, 597: 6-15. DOI:10.1016/j.cplett.2014.02.024 |
|
[14] |
KUSOGLU A, WEBER A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104. DOI:10.1021/acs.chemrev.6b00159 |
|
[15] |
OZDEN A, ERCELIK M, DEVRIM Y, et al. Evaluation of sulfonated polysulfone/zirconium hydrogen phosphate composite membranes for direct methanol fuel cells[J]. Electrochimica Acta, 2017, 256(Suppl C): 196-210. |
|
[16] |
XIE H, TAO D, XIANG X, et al. Synthesis and properties of highly branched star-shaped sulfonated block poly(arylene ether)s as proton exchange membranes[J]. Journal of Membrane Science, 2015, 473: 226-236. DOI:10.1016/j.memsci.2014.09.015 |
|
[17] |
SUN H, TANG B, WU P. Two-dimensional zeolitic imidazolate framework/carbon nanotube hybrid networks modified proton exchange membranes for improving transport properties[J]. ACS Applied Materials & Interfaces, 2017, 9(40): 35075-35085. |
|
[18] |
YAO Z, ZHANG Z, HU M, et al. Perylene-based sulfonated aliphatic polyimides for fuel cell applications: performance enhancement by stacking of polymer chains[J]. Journal of Membrane Science, 2018, 547(Suppl C): 43-50. |
|
[19] |
LI Q, JENSEN J O, SAVINELL R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Progress in Polymer Science, 2009, 34(5): 449-477. DOI:10.1016/j.progpolymsci.2008.12.003 |
|
[20] |
BOSE S, KUILA T, NGUYEN T X H, et al. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges[J]. Progress in Polymer Science, 2011, 36(6): 813-843. DOI:10.1016/j.progpolymsci.2011.01.003 |
|
[21] |
LI C, HUANG N, JIANG Z, et al. Sulfonated holey graphene oxide paper with SPEEK membranes on its both sides: a sandwiched membrane with high performance for semi-passive direct methanol fuel cells[J]. Electrochimica Acta, 2017, 250: 68-76. DOI:10.1016/j.electacta.2017.08.058 |
|
[22] |
LEE J R, WON J H, YOON K S, et al. Multilayer-structured, SiO 2/sulfonated poly(phenylsulfone) composite membranes for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(7): 6182-6188. DOI:10.1016/j.ijhydene.2011.07.085 |
|
[23] |
LIU D S, ASHCRAFT J N, MANNARINO M M, et al. Spray layer-by-layer electrospun composite proton exchange membranes[J]. Advanced Functional Materials, 2013, 23(24): 3087-3095. DOI:10.1002/adfm.201202892 |
|
[24] |
XIANG Y, LU S, JIANG S P. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors[J]. Chemical Society Reviews, 2012, 41(21): 7291-7321. DOI:10.1039/c2cs35048c |
|
[25] |
JIANG Y, HOU M, HAO J, et al. Enhanced durability of sulfonated poly(ether ether ketones)-based polymer electrolyte membranes by a multi-layer composite technology[J]. Solid State Ionics, 2017, 309: 33-40. DOI:10.1016/j.ssi.2017.07.003 |
|
[26] |
LEE C, PARK J, JEON Y, et al. Phosphate-modified TiO2/ZrO2 nanofibrous web composite membrane for enhanced performance and durability of high-temperature proton exchange membrane fuel cells[J]. Energy & Fuels, 2017, 31(7): 7645-7652. |
|
[27] |
LI Z, YUE X, HE G, et al. Enhanced water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) hybrid membrane by incorporating ellipsoidal microcapsules[J]. International Journal of Hydrogen Energy, 2015, 40(26): 8398-8406. DOI:10.1016/j.ijhydene.2015.04.138 |
|
[28] |
HE X, HE G, ZHAO A, et al. Facilitating proton transport in Nafion-based membranes at low humidity by incorporating multifunctional graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27676-27687. |
|
[29] |
RU C, LI Z, ZHAO C, et al. Enhanced proton conductivity of sulfonated hybrid poly(arylene ether ketone) membranes by incorporating an amino-sulfo bifunctionalized metal-organic framework for direct methanol fuel cells[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7963-7973. |
|
[30] |
HAJDOK I, BONA A, WERNER H J, et al. Synthesis and characterization of fluorinated and sulfonated poly(arylene ether-1, 3, 4-oxadiazole) derivatives and their blend membranes[J]. European Polymer Journal, 2014, 52: 76-87. DOI:10.1016/j.eurpolymj.2013.12.003 |
|
[31] |
ABOUZARI-LOTF E, NASEF M M, GHASSEMI H, et al. Improved methanol barrier property of Nafion hybrid membrane by incorporating nanofibrous interlayer self-immobilized with high level of phosphotungstic acid[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17008-17015. |
|
[32] |
DANG J, ZHAO L, ZHANG J, et al. Imidazole microcapsules toward enhanced phosphoric acid loading of polymer electrolyte membrane for anhydrous proton conduction[J]. Journal of Membrane Science, 2018, 545: 88-98. DOI:10.1016/j.memsci.2017.09.062 |
|
[33] |
ZHANG B, CAO Y, LI Z, et al. Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications[J]. Electrochimica Acta, 2017, 240: 186-194. DOI:10.1016/j.electacta.2017.04.087 |
|
[34] |
WANG J, YUE X, ZHANG Z, et al. Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes[J]. Advanced Functional Materials, 2012, 22(21): 4539-4546. DOI:10.1002/adfm.201201436 |
|
[35] |
WANG J, ZHANG H, YANG X, et al. Enhanced water retention by using polymeric microcapsules to confer high proton conductivity on membranes at low humidity[J]. Advanced Functional Materials, 2011, 21(5): 971-978. DOI:10.1002/adfm.201001793 |
|
[36] |
PARK J, WANG L, ADVANI S G, et al. Mechanical stability of H 3PO 4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature pemfcs[J]. Electrochimica Acta, 2014, 120: 30-38. DOI:10.1016/j.electacta.2013.12.030 |
|
[37] |
PARNIAN M J, ROWSHANZAMIR S, PRASAD A K, et al. High durability sulfonated poly(ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2018, 556: 12-22. DOI:10.1016/j.memsci.2018.03.083 |
|
[38] |
SUN P, LI Z, JIN L, et al. Construction of proton channels and reinforcement of physicochemical properties of oPBI/FeSPP/GF high temperature PEM via building hydrogen bonding network[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14572-14582. DOI:10.1016/j.ijhydene.2017.04.092 |
|
[39] |
SUN P, LI Z, JIN L, et al. Pre-oxidized acrylic fiber reinforced ferric sulfophenyl phosphate-doped polybenzimidazole-based high-temperature proton exchange membrane[J]. Macromolecular Materials and Engineering, 2017, 302(7): 1600468. DOI:10.1002/mame.201600468 |
|
[40] |
KALLEM P, DROBEK M, JULBE A, et al. Hierarchical porous polybenzimidazole microsieves: an efficient architecture for anhydrous proton transport via polyionic liquids[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14844-14857. |
|
[41] |
YANG J, JIANG H, GAO L, et al. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3299-3307. DOI:10.1016/j.ijhydene.2017.12.141 |
|
[42] |
SUN P, LI Z, WANG S, et al. Performance enhancement of polybenzimidazole based high temperature proton exchange membranes with multifunctional crosslinker and highly sulfonated polyaniline[J]. Journal of Membrane Science, 2018, 549: 660-669. DOI:10.1016/j.memsci.2017.10.053 |
|
[43] |
LIU X, ZHANG Y, CHEN Y, et al. A superhydrophobic bromomethylated poly(phenylene oxide) as a multifunctional polymer filler in SPEEK membrane towards neat methanol operation of direct methanol fuel cells[J]. Journal of Membrane Science, 2017, 544: 58-67. DOI:10.1016/j.memsci.2017.09.013 |
|
[44] |
SONG M, LU X, LI Z, et al. Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12069-12081. DOI:10.1016/j.ijhydene.2016.05.227 |
|
[45] |
QIU X, UEDA M, HU H, et al. Poly(2, 5-benzimidazole)-grafted graphene oxide as an effective proton conductor for construction of nanocomposite proton exchange membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33049-33058. |
|
[46] |
YANG J, XU Y, LIU P, et al. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes[J]. Electrochimica Acta, 2015, 160: 281-287. DOI:10.1016/j.electacta.2015.01.094 |
|
[47] |
SUN P, LI Z, DONG F, et al. High temperature proton exchange membranes based on cerium sulfophenyl phosphate doped polybenzimidazole by end-group protection and hot-pressing method[J]. International Journal of Hydrogen Energy, 2017, 42(1): 486-495. DOI:10.1016/j.ijhydene.2016.09.174 |
|
[48] |
D'URSO C, OLDANI C, BAGLIO V, et al. Fuel cell performance and durability investigation of bimetallic radical scavengers in aquivion ® perfluorosulfonic acid membranes[J]. International Journal of Hydrogen Energy, 2017, 42(46): 27987-27994. DOI:10.1016/j.ijhydene.2017.07.111 |
|
[49] |
SHIN D, HAN M, SHUL Y G, et al. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test[J]. Journal of Power Sources, 2018, 378: 468-474. DOI:10.1016/j.jpowsour.2017.12.074 |
|
[50] |
KLUMPEN C, GODRICH S, PAPASTAVROU G, et al. Water mediated proton conduction in a sulfonated microporous organic polymer[J]. Chemical Communications, 2017, 53(54): 7592-7595. DOI:10.1039/C7CC02117H |
|
[51] |
VUILLEUMIER R, BORGIS D. Proton conduction: hopping along hydrogen bonds[J]. Nature Chemistry, 2012, 4(6): 432-433. DOI:10.1038/nchem.1365 |
|
[52] |
JIA W, WU P. Stable boron nitride nanocomposites based membranes for high-efficiency proton conduction[J]. Electrochimica Acta, 2018, 273: 162-169. DOI:10.1016/j.electacta.2018.04.017 |
|
[53] |
DONNADIO A, D'AMATO R, MARMOTTINI F, et al. On the evolution of proton conductivity of aquivion membranes loaded with CeO 2 based nanofillers: effect of temperature and relative humidity[J]. Journal of Membrane Science, 2019, 574: 17-23. DOI:10.1016/j.memsci.2018.12.045 |
|
[54] |
ZHANG J, ZHANG J, BAI H, et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application[J]. Journal of Membrane Science, 2019, 572: 496-503. DOI:10.1016/j.memsci.2018.11.035 |
|
[55] |
SHAHGALDI S, ALAEFOUR I, LI X. The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability[J]. Applied Energy, 2018, 217: 295-302. DOI:10.1016/j.apenergy.2018.02.154 |
|
[56] |
TRIGG E B, GAINES T W, MARÉCHAL M, et al. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport[J]. Nature Materials, 2018, 17(8): 725-731. DOI:10.1038/s41563-018-0097-2 |
|
[57] |
FENG Z M, ZHAO Y, LI X, et al. Synthesis and characterization of a novel norbornene based copolymer[J]. CIESC Journal, 2015, 66(Suppl 2): 439-444. |
|
[58] |
WANG L S, LAI A N, ZHUO Y Z, et al. Properties of hybrid SPEK-C/GO composite proton exchange membranes[J]. CIESC Journal, 2015, 66(9): 3605-3610. |
|
[59] |
ONO Y, GOTO R, HARA M, et al. High proton conduction of organized sulfonated polyimide thin films with planar and bent backbones[J]. Macromolecules, 2018, 51(9): 3351-3359. DOI:10.1021/acs.macromol.8b00301 |
|
[60] |
GAO S, XU H, LUO T, et al. Novel proton conducting membranes based on cross-linked sulfonated polyphosphazenes and poly(ether ether ketone)[J]. Journal of Membrane Science, 2017, 536: 1-10. DOI:10.1016/j.memsci.2017.04.065 |
|
[61] |
PINGITORE A T, HUANG F, QIAN G, et al. Durable high polymer content m/p-polybenzimidazole membranes for extended lifetime electrochemical devices[J]. ACS Applied Energy Materials, 2019, 2(3): 1720-1726. DOI:10.1021/acsaem.8b01820 |
|
[62] |
JANKOWSKA A, ZALEWSKA A, SKALSKA A, et al. Proton conductivity of imidazole entrapped in microporous molecular sieves[J]. Chemical Communications, 2017, 53(16): 2475-2478. DOI:10.1039/C7CC00690J |
|
[63] |
HOSHINO T, HAYASHI K, SAKAMOTO W, et al. One-pot synthesis of proton-conductive inorganic-organic hybrid membranes from organoalkoxysilane and phosphonic acid derivatives[J]. Journal of Membrane Science, 2016, 502: 133-140. DOI:10.1016/j.memsci.2015.12.045 |
|
[64] |
CHEN X, LV H, LIN Q, et al. Partially fluorinated poly(arylene ether)s bearing long alkyl sulfonate side chains for stable and highly conductive proton exchange membranes[J]. Journal of Membrane Science, 2018, 549: 12-22. DOI:10.1016/j.memsci.2017.11.066 |
|
[65] |
YANG S, KIM D. Antioxidant proton conductive toughening agent for the hydrocarbon based proton exchange polymer membrane for enhanced cell performance and durability in fuel cell[J]. Journal of Power Sources, 2018, 393: 11-18. DOI:10.1016/j.jpowsour.2018.05.014 |
|
[66] |
BU F, ZHANG Y, HONG L, et al. 1, 2, 4-triazole functionalized poly(arylene ether ketone) for high temperature proton exchange membrane with enhanced oxidative stability[J]. Journal of Membrane Science, 2018, 545(Suppl C): 167-175. |
|
[67] |
LIU J, YU L, CAI X, et al. Sandwiching h-BN monolayer films between sulfonated poly(ether ether ketone) and Nafion for proton exchange membranes with improved ion selectivity[J]. ACS Nano, 2019, 13(2): 2094-2102. |
|
[68] |
YANG J, HE R, AILI D, et al. Synthesis of polybenzimidazoles[M]. Cham, Switzerland: Springer International Publishing, 2016.
|
|
[69] |
ASENSIO J A, SANCHEZ E M, GOMEZ-ROMERO P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. a chemical quest[J]. Chemical Society Reviews, 2010, 39(8): 3210-3239. DOI:10.1039/b922650h |
|
[70] |
KORTE C, CONTI F, WACKERL J, et al. Uptake of protic electrolytes by polybenzimidazole-type polymers:absorption isotherms and electrolyte/polymer interactions[J]. Journal of Applied Electrochemistry, 2015, 45(8): 857-871. DOI:10.1007/s10800-015-0855-7 |
|
[71] |
YU T L. Polybenzimidazole/porous poly(tetrafluoro ethylene) composite membranes[M]. Cham, Switzerland: Springer International Publishing, 2016.
|
|
[72] |
PERRY A K, MORE L K, ANDREW PAYZANT E, et al. A comparative study of phosphoric acid-doped m-PBI membranes[J]. Journal of Polymer Science Part B, 2014, 52(1): 26-35. DOI:10.1002/polb.23403 |
|
[73] |
QUARTARONE E, MUSTARELLI P. Polymer fuel cells based on polybenzimidazole/H3PO4[J]. Energy & Environmental Science, 2012, 5(4): 6436-6444. |
|
[74] |
WANG S W, DONG F L, LI Z F. Proton-conducting membrane preparation based on SiO 2-riveted phosphotungstic acid and poly (2, 5-benzimidazole) via direct casting method and its durability[J]. Journal of Materials Science, 2012, 47(11): 4743-4749. DOI:10.1007/s10853-012-6350-1 |
|
[75] |
ZHANG Q, LIU H, LI X, et al. Synthesis and characterization of polybenzimidazole/α-zirconium phosphate composites as proton exchange membrane[J]. Polymer Engineering & Science, 2016, 56(6): 622-628. |
|
[76] |
KIM T H, LIM T W, PARK Y S, et al. Proton-conducting zirconium pyrophosphate/poly(2, 5-benzimidazole) composite membranes prepared by a PPA direct casting method[J]. Macromolecular Chemistry and Physics, 2007, 208(21): 2293-2302. DOI:10.1002/macp.200700261 |
|
[77] |
LINLIN M, MISHRA A K, KIM N H, et al. Poly(2, 5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell[J]. Journal of Membrane Science, 2012, 411-412: 91-98. DOI:10.1016/j.memsci.2012.04.018 |
|
[78] |
JHENG L C, HUANG C Y, HSU S L C. Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(3): 1524-1534. DOI:10.1016/j.ijhydene.2012.10.111 |
|
[79] |
SUN P, LI Z, SONG M, et al. Preparation and characterization of zirconium phytate as a novel solid intermediate temperature proton conductor[J]. Materials Letters, 2017, 191: 161-164. DOI:10.1016/j.matlet.2016.12.076 |
|
[80] |
JIANG F, PU H, MEYER W H, et al. A new anhydrous proton conductor based on polybenzimidazole and tridecyl phosphate[J]. Electrochimica Acta, 2008, 53(13): 4495-4499. DOI:10.1016/j.electacta.2008.01.022 |
|
[81] |
LIN H L, TANG T H, HU C R, et al. Poly(benzimidazole)/silica-ethyl-phosphoric acid hybrid membranes for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 201: 72-80. DOI:10.1016/j.jpowsour.2011.10.110 |
|
[82] |
DONG F L, LI Z F, WANG S W, et al. Synthesis and characteristics of proton-conducting membranes based on cerium sulfophenyl phosphate and poly (2, 5-benzimidazole) by hot-pressing method[J]. International Journal of Hydrogen Energy, 2011, 36(17): 11068-11074. DOI:10.1016/j.ijhydene.2011.05.128 |
|
[83] |
WANG S, SUN P, HAO X, et al. Ferric sulfophenyl phosphate bonded with phosphotungstic acid as a novel intercalated high-temperature inorganic-organic proton conductor[J]. Materials Chemistry and Physics, 2018, 213: 35-43. DOI:10.1016/j.matchemphys.2018.04.009 |
|
[84] |
WANG S, SUN P, LI Z, et al. Comprehensive performance enhancement of polybenzimidazole based high temperature proton exchange membranes by doping with a novel intercalated proton conductor[J]. International Journal of Hydrogen Energy, 2018, 43(21): 9994-10003. DOI:10.1016/j.ijhydene.2018.04.089 |
|
[85] |
TANAKA M, TAKEDA Y, WAKIYA T, et al. Acid-doped polymer nanofiber framework: three-dimensional proton conductive network for high-performance fuel cells[J]. Journal of Power Sources, 2017, 342: 125-134. DOI:10.1016/j.jpowsour.2016.12.018 |
|
[86] |
KERRES J A, KATZFUß A, CHROMIK A, et al. Sulfonated poly(styrene)s-PBIOO® blend membranes: thermo-oxidative stability and conductivity[J]. Journal of Applied Polymer Science, 2014, 131(4): 39889. |
|
[87] |
BERBER M R, FUJIGAYA T, SASAKI K, et al. Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole[J]. Scientific Reports, 2013, 3: 1764. DOI:10.1038/srep01764 |
|
[88] |
REWAR A S, CHAUDHARI H D, ILLATHVALAPPIL R, et al. New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties[J]. Journal of Materials Chemistry A, 2014, 2(35): 14449-14458. DOI:10.1039/C4TA02184C |
|
[89] |
TADAVANI K F, ABDOLMALEKI A, MOLAVIAN M R, et al. Synergistic behavior of phosphonated and sulfonated groups on proton conductivity and their performance for high-temperature proton exchange membrane fuel cells (PENFCs)[J]. Energy & Fuels, 2017, 31(10): 11460-11470. |
|
[90] |
YANG J, AILI D, LI Q, et al. Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells[J]. Polymer Chemistry, 2013, 4(17): 4768-4775. DOI:10.1039/c3py00408b |
|
[91] |
DIAZ L A, ABUIN G C, CORTI H R. Acid-doped ABPBI membranes prepared by low-temperature casting: Proton conductivity and water uptake properties compared with other polybenzimidazole-based membranes[J]. Journal of the Electrochemical Society, 2016, 163(6): F485-F491. DOI:10.1149/2.0671606jes |
|
[92] |
YUAN Q, SUN G H, HAN K F, et al. Copolymerization of 4-(3, 4-diamino-phenoxy)-benzoic acid and 3, 4-diaminobenzoic acid towards H 3PO 4-doped PBI membranes for proton conductor with better processability[J]. European Polymer Journal, 2016, 85: 175-186. DOI:10.1016/j.eurpolymj.2016.10.002 |
|
[93] |
NI J, HU M, LIU D, et al. Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells[J]. Journal of Materials Chemistry C, 2016, 4(21): 4814-4821. DOI:10.1039/C6TC00862C |
|
[94] |
YANG J, CLEEMANN L N, STEENBERG T, et al. High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14(1): 7-15. DOI:10.1002/fuce.201300070 |
|
[95] |
LI X, WANG P, LIU Z, et al. Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2018, 393: 99-107. DOI:10.1016/j.jpowsour.2018.05.011 |
|
[96] |
DEVRIM Y, DEVRIM H, EROGLU I. Polybenzimidazole/SiO 2 hybrid membranes for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(23): 10044-10052. DOI:10.1016/j.ijhydene.2016.02.043 |
|
[97] |
SINGHA S, JANA T. Influence of interfacial interactions on the properties of polybenzimidazole/clay nanocomposite electrolyte membrane[J]. Polymer, 2016, 98: 20-31. DOI:10.1016/j.polymer.2016.06.007 |
|
[98] |
GUERRERO MORENO N, GERVASIO D, GODÍNEZ GARCÍA A, et al. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 300: 229-237. DOI:10.1016/j.jpowsour.2015.09.070 |
|
[99] |
ÖZDEMIR Y, ÖZKAN N, DEVRIM Y. Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells[J]. Electrochimica Acta, 2017, 245: 1-13. DOI:10.1016/j.electacta.2017.05.111 |
|
[100] |
AILI D, LI Q, CHRISTENSEN E, et al. Crosslinking of polybenzimidazole membranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications[J]. Polymer International, 2011, 60(8): 1201-1207. DOI:10.1002/pi.3063 |
|
[101] |
YANG J, LI Q, CLEEMANN L N, et al. Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications[J]. Advanced Energy Materials, 2013, 3(5): 622-630. DOI:10.1002/aenm.201200710 |
|
[102] |
WANG L, ADVANI S G, PRASAD A K. PBI/Nafion/SiO 2 hybrid membrane for high-temperature low-humidity fuel cell applications[J]. Electrochimica Acta, 2013, 105: 530-534. DOI:10.1016/j.electacta.2013.05.043 |
|