﻿ 附加深度差和水平距离约束的深海控制点差分定位算法
 文章快速检索 高级检索

1. 海军大连舰艇学院海洋测绘系, 辽宁 大连 116018;
2. 地理信息工程国家重点实验室, 陕西 西安 710054;
3. 武汉大学测绘学院, 湖北 武汉 430079

Differential positioning algorithm for deep-sea control points on constraint of depth difference and horizontal distance constraint
SUN Wenzhou1, YIN Xiaodong1, ZENG Anmin2, BAO Jingyang3
1. Department of Hydrography and Cartography, Dalian Naval Academy, Dalian 116018, China;
2. State Key Laboratory of Geo-information Engineering, Xi'an 710054, China;
3. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
Abstract: To solve the problem of seafloor control point (transponder) absolute positioning with a large deviation of the vertical solution, this paper proposes a differential localization algorithm with depth difference and horizontal distance constraint between underwater control points. Firstly, the variation of sound velocity profile is studied. Based on this conclusion, the influence of uncertain sound velocity profile on the ranging error is analyzed. Secondly, according to the change law of ranging error, the corresponding measuring line is designed. And an underwater differential localization algorithm for this survey strategy is proposed. Finally, simulation experiments show that the deviation of the vertical solution is reduced from more than 30 cm to about 10 cm. It implies that the new method can effectively reduce the deviation of the vertical solution of the control point positioning compared with the traditional method (circular sailing).
Key words: seafloor control points    differential localization algorithm    sailing circle    acoustic ranging system error    sound velocity profile

1 声速剖面的不确定性对测距误差的影响

(1)

(2)

(3)

2 深海海底控制点绝对坐标的解算方法

(4)

 图 1 测量船走航航迹 Fig. 1 The trajectory of the survey ship

(5)

(6)

(7)

(8)

(9)
(10)

(11)
(12)

(13)

(14)

(15)

(16)

(17)
(18)
(19)
3 仿真试验分析

(20)
(21)

 图 2 仿真所得声速剖面 Fig. 2 Sound velocity profile abtained by simulation

 图 3 温度日变化引起的声速剖面变化 Fig. 3 Variation of sound velocity profile caused by diurnal temperature variation

 图 4 内波引起的声速剖面变化 Fig. 4 Variation of sound velocity profile caused by internal waves

 图 5 背景声速剖面误差引起的测距误差与水平距离的关系 Fig. 5 Relationship between range error caused by background sound velocity profile error and horizontal distance

 图 6 温度日变化影响 Fig. 6 The influence of diurnal temperature rariation

 图 7 内波影响 Fig. 7 The influence of internal waves

 cm 应答器 dx dy dz XO1 3.3 -6.5 -35.7 XO2 3.7 -6.4 -36.4

 cm 应答器 dx dy dz XO1 1.1 -4.0 -10.1 XO2 1.4 -3.8 -9.3

4 结语

(1) 声速剖面的不确定性引起的测距误差包括背景声速剖面误差、误差的长周期项和误差的短周期项；声速剖面面积与周期项测距误差具有相同的变化规律和周期；

(2) 本文提出的附加应答器水平距离和深度差约束的水下差分定位模型，相比于目前认可度较高的圆走航方法，控制点坐标水平解和垂直解的偏差都有所减小，特别是垂直解的偏差得到了较大的改善，验证了该方法的有效性。

﻿

http://dx.doi.org/10.11947/j.AGCS.2019.20180514

0

#### 文章信息

SUN Wenzhou, YIN Xiaodong, ZENG Anmin, BAO Jingyang

Differential positioning algorithm for deep-sea control points on constraint of depth difference and horizontal distance constraint

Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1190-1196
http://dx.doi.org/10.11947/j.AGCS.2019.20180514