文章快速检索  
  高级检索
GNSS空间环境学研究进展和展望
姚宜斌1, 张顺1, 孔建2     
1. 武汉大学测绘学院, 湖北 武汉 430079;
2. 武汉大学南极测绘研究中心, 湖北 武汉 430079
摘要:对流层和电离层是地球近地空间环境中两个重要的组成部分,是靠近地球表面且与人类生活联系最密切的大气圈层。全球导航卫星系统技术的快速发展,为GNSS空间环境学的研究提供了良好的契机。本文介绍了现有GNSS空间环境学中在对流层和电离层方面的研究现状和进展。在GNSS对流层研究方面,主要集中于GNSS对流层关键参数建模和水汽反演两部分;在GNSS电离层研究方面,主要包括GNSS二维/三维电离层建模和区域/全球电离层监测。
关键词:对流层    大气可降水    电离层    GNSS空间环境学    
Research Progress and Prospect of GNSS Space Environment Science
YAO Yibin1, ZHANG Shun1, KONG Jian2     
1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;
2. Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China
Foundation support: The National Natural Science Foundation of China (No. 41574028); The Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China (No. 2015CFA036)
First author: YAO Yibin(1976—), male, PhD, professor, majors in geodetic data processing and GNSS space environment science.E-mail:ybyao@whu.edu.cn
Abstract: Troposphere and ionosphere are two important components of the near-earth space environment. They are close to the surface of the earth and have great influence on human life. The developments of Global Navigation Satellite System (GNSS) over the past several decades provide a great opportunity for the GNSS-based space environment science. This review summarizes the research progress and prospect of the GNSS-based research of the Earth's troposphere and ionosphere. On the tropospheric perspective, modeling of the key tropospheric parameters and inversion of precipitable water vapor (PWV) are dominant researching fields. On the ionospheric perspective, 2D/3D ionospheric models and regional/global ionospheric monitoring are dominant researching fields.
Key words: troposphere     PWV     ionosphere     GNSS space environment science    

对流层是地球近地空间环境的重要组成部分之一,是与人类生活联系最密切的大气圈层。作为对流层中一种非常重要的温室气体,水汽在其变化过程中会吸收和释放大量潜热,直接影响地面和空气温度,进而影响大气垂直稳定度和对流天气系统的形成与演变,在全球大气辐射、能量平衡、水循环中都扮演了极其重要的角色。水汽是降水、蒸发和湿度平衡的结果,它是底层大气圈相关天气过程中的一个重要指标,是天气、气候变化发生和发展的主要驱动力,是灾害性天气形成和演变的重要因子。大气中的水汽受季节、地形及其他全球气候条件等因素的影响,具有空间分布不均匀、随时空变化较快等特性。因此,研究掌握全球水汽变化的时空特性有助于了解全球水汽循环路径,可为监测和预报暴雨、寒流、台风等多种恶劣天气和重大旱涝灾害灾前信息获取与灾害预警提供数据支持,对于研究全球气候变化和改善气象预报水平具有重要的科学和现实意义。

作为地球近地空间环境的另外一个重要组成部分,电离层的变化,特别是空间暴的发生,对航天安全、无线电通信、定位与导航等有破坏性影响,近年的研究发现,一些自然灾害(如地震、台风、海啸、火山喷发等)的孕育和发生过程及一些人为活动(如火箭发射等)都有可能引起电离层异常,很可能成为预报重大自然灾害和监测人类活动的一种潜在手段。利用现代科技手段进行日地空间特别是地球空间的探测,掌握电离层的基本结构和变化规律,不仅有利于提高测速、定位、授时、通信和导航等系统的精度,而且对于研究高空大气各层之间的相互关系和作用,特别是对全球性的电离层扰动及不规则变化的发生机理的研究等具有重要的科学意义。这项工作已引起不少国家的学者甚至是政府部门的重视,在电离层监测及其应用研究方面已取得不少成果。

传统水汽和电离层探测手段时空分辨率低,受天气影响,GNSS的出现提供了新的技术手段。利用GNSS信号经过电离层、对流层时受到的延迟影响,可以高时空分辨率地反演出电离层电子密度和对流层水汽信息,监测这两方面的空间环境的变化,由此衍生出GNSS空间环境学这一新的学科方向。

下面分别对GNSS空间环境学中的关键技术进行介绍,主要包括对流层关键参量建模、GNSS对流层水汽反演、GNSS电离层监测和建模方面的研究。

1 对流层关键参量建模

对流层在全球大气辐射、能量平衡、水循环中都扮演了极其重要的角色,气温、气压、水汽压、天顶湿延迟(zenith wet delay,ZWD)、天顶静力学延迟(zenith hydrostatic delay,ZHD)与水汽等都是对流层中重要的参量,也是研究全球气候变化、极端天气产生机理等的参考指标。当前主要有3类关键参量建模方法:对流层关键参量经验模型、基于实测气象参数的对流层延迟模型和基于GNSS观测数据的对流层延迟模型。这3类模型建模成本(时间、人力、物力)依次增加,但相对应的对流层模型精度也逐渐提高。

1.1 基于经验模型的对流层关键参量建模进展

对流层关键参量经验模型旨在解决无任何辅助信息下通过模型直接获取高精度的对流延迟,文献[12]最初为美国广域增强导航系统的应用建立了UNB系列模型,用来估计所需的气象参数,UNB3模型在北美地区估计的对流层天顶延迟的平均误差约为2 cm。EGNOS模型[3]对UNB3模型进行了简化,但是气象参数的估计公式不同,已被用于欧洲和日本等地区的卫星导航增强系统[4-5]。文献[6]利用美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的数字天气模型(numerical weather model,NWM)产品建立了水平分辨率为1°×1°的TropGrid模型,其与EGNOS相比全球平均精度提高了25%。文献[7]利用由欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的NWM产品ERA-40建立了全球气压和温度经验模型(global pressure and temperature,GPT),GPT模型在实际中得到了广泛的应用[8-14]。文献[1516]利用NCEP资料建立了全球对流层延迟经验模型IGGtrop系列模型。文献[17]针对GPT模型的部分不足之处进行了改进和优化,构建了新的经验模型GPT2。文献[18]对TropGrid模型进行优化升级,建立了新的经验模型TropGrid2,模型能提供气温、气压、大气加权平均温度及天顶对流层湿延迟等对流层关键参数估值。文献[19]建立的GPT2w模型,相比GPT2模型增加了水汽递减率和大气加权平均温度这2项估计参数。GPT2系列模型一经发布,便有不少学者都对其精度及应用效果进行了评估,结果表明其具有很高的精度[20-22]。文献[20]考虑到GPT2和TropGrid2模型所提供参数种类的优缺点,提出了对流层误差改正模型ITG(improved tropospheric grid model),该模型的建模对象包括地表气温、气压、ZWD及气温直减率。

1.2 基于实测气象参数的对流层关键参量建模进

基于实测气象参数的对流层延迟模型利用气象参数来计算ZTD,通常将ZHD与ZWD分开进行计算。文献[23]提出了基于气象参数的对流层延迟模型,通过利用测站高度及气温、气压、水汽压来计算ZTD,Hopfield模型的ZHD和ZWD可以分开计算。文献[24]也提出了基于气象参数的对流层延迟模型,通过利用测站纬度、高度,以及气温、气压、水汽压即可计算出ZTD,Saastamoinen模型中ZHD与ZWD也可分开进行计算。文献[25]则提出了利用气象参数计算ZWD的模型,模型输入的参数包括测站处的气温、气压及水汽压。文献[26]也提出了一种计算ZWD的模型,模型所需的气象参数包括大气加权平均温度、水汽压及水汽压递减率。但是不少学者的研究结果[27]都表明:Hopfield、Saastamoinen等模型通过气象参数计算的ZTD与经验模型相比精度上没有优势,甚至还更差。这在一定程度上不仅使得对基于气象参数的对流层延迟模型研究热度降低,也使得该类模型的应用偏少。

1.3 基于GNSS观测数据的对流层关键参量建模进展

基于GNSS的对流层延迟模型即利用GNSS观测数据进行ZTD解算,然后再建模。目前在利用GNSS观测数据估计ZTD时,都需要通过对流层映射函数将斜路径的延迟转换为天顶方向的延迟。对流层映射函数从发展至今已经日趋成熟稳定,映射函数通常采用连分式[28]。文献[29]通过拟合10个北美探空气球站的观测数据,首次建立了基于实测大气的映射函数,并且把连分式系数从与气象参数相关改成与温度和地理位置相关。文献[30]利用26个北半球无线电探空测站一年的数据建立了NMF映射函数,在NMF中连分式系数只与测站纬度、高度和年积日相关。由于NMF误差大小依赖于纬度的变化及对经度不敏感,许多学者开始利用NWM建立投影函数,如IMF[31]、VMF1[32]。其中VMF1被认为是目前最高精度的全球范围对流层映射函数模型,已经被GAMIT、Bernese等高精度GNSS数据处理软件所采用[33]。考虑到非在线用户无法获取VMF1产品的情况,文献[34]建立了经验映射函数模型GMF,仅需测站坐标及年积日即可提供全球范围的映射函数系数,该模型使用简单方便且与VMF1具有很好的一致性。

限于双差精密定位技术在实时估计天顶对流层延迟时需要引入500 km以外GNSS参考站的问题[35],精密单点定位技术(precise point positioning, PPP)较双差技术相比具有更大的优势。文献[36]研究了利用JPL实时轨道、时钟产品和PPP技术估计天顶对流层湿延迟,结果表明其精度可达13 mm。文献[37]研究了利用PPP技术估计对流层延迟的精度,其结果表明利用PPP技术估计对流层延迟可以获得很高的精度。文献[38]利用了CNES的实时改正数和近实时PPP估计了对流层延迟,与事后处理的结果相比大概存在6.5 mm的偏差,RMS为13 mm。

在区域对流层建模方面,目前已经存在着诸多线性内插模型,如反距离内插模型、线性内插模型、最小二乘配置模型、线性组合模型等,但是文献[39]认为这些模型基本类似并没有明显的区别。文献[40]提出了含高程因子的对流层内插模型。文献[41]按照经验研究分析了几种不同形式的对流层内插模型。

2 GNSS对流层水汽反演

GNSS对流层水汽反演技术具有连续运行、全天候、高精度、高时空分辨率等优点,且测站布设成本低,投入使用快,可实现大范围高密度的实时水汽监测,该技术的出现是传统水汽探测技术的强有力补充,它不仅可以得到对流层中大气可降水量(precipitable water vapor, PWV)的二维空间分布,也可以通过层析成像技术(tomography technique)重构大气水汽在垂直方向上的三维廓线信息,已逐渐成为获取对流层中大气水汽最具有潜力的手段之一。根据GNSS水汽反演产品不同,可分为二维水汽产品和三维水汽时空分布信息。下面分别对二维水汽和三维水汽反演进展进行介绍。

2.1 二维对流层水汽(PWV)反演研究进展

在二维PWV反演方面,文献[42]首次利用GPS观测数据估计得到测站天顶方向的PWV,这促进了一门全新的学科,即GNSS气象学(GNSS Meteorology)的发展。国内外众多学者对获取PWV的可行性和精度进行了大量研究。通过与探空数据(radiosonde)、水汽辐射计(water vapor radiometer, WVR)和甚长基线干涉(very long baseline interferometry, VLBI)对比发现,基于地基GNSS反演的PWV精度在1~1.5 mm[35, 43-50]

在斜路径水汽含量(slant water vapor, SWV)精度评定方面,众多学者对SWV的计算方法进行改进,提出了顾及双差残差、星间单差等反演水汽的方法[48-49],并将结果与微波辐射计对比发现,GPS反演SWV的精度在4 mm[51]。近年来,随着我国北斗卫星导航系统的迅猛发展,相关学者也对北斗卫星系统获取PWV的精度进行检验。文献[52]基于上海市气象局的北斗气象站数据反演PWV,并与GPS和探空数据计算结果进行对比,发现其均方根误差分别小于3.5和3.6 mm。文献[53]对北斗卫星探测PWV的性能进行分析,并与探空数据计算结果进行对比,发现北斗反演PWV与探空数据计算结果有很好的一致性,但与GPS反演的PWV有2~3.3 mm的系统误差。

2.2 三维水汽反演研究进展

在对流层层析领域,文献[54]首次提出了利用区域观测网重构对流层水汽结构的概念。文献[55]首先实现了利用层析技术得到区域GPS网的四维湿折射率图像,证明了利用层析技术监测对流层时空变化的可行性。随后,众多学者对三维水汽层析方法进行大量验证和改进[56-59],提出了有限先验信息非约束、改进卡尔曼滤波、蒙特卡罗等水汽反演方法。

在多系统数据和多源数据联合反演水汽方面,试验证明了利用多系统观测数据可以在一定程度上提高水汽反演结果的精度和可靠性[60-61]。此外,也有相关研究联合地基和空基GNSS观测数据联合反演水汽的方法[62]。近年来,一些学者也相继提出了利用合成孔径雷达(interferometric synthetic aperture radar, InSAR)和GNSS观测值联合反演三维水汽信息的思路[63-65]。重构的三维水汽信息可用于气象方面的研究,例如对冷锋路径的探测[66]、改善不同尺度数值预报结果[67-71]及灾害性天气的研究[47]

在层析模型求解和算法改进方面,文献[66]提出了阻尼最小二乘方法对观测方程进行求解。文献[7273]采用扩展的序贯逐次滤波方法,克服了解算结果敏感性的问题。文献[74]给出了一种新的节点参数化水汽反演方法。文献[7576]提出了基于卡尔曼滤波的三维水汽层析算法。文献[77]提出了基于代数重构算法层析三维水汽的方法。文献[78]为了克服水平约束方程权值选取不合理对层析结果造成的影响,提出了选权拟合法进行层析解算的方法。文献[7982]在层析方程解算方面分别提出了自适应卡尔曼滤波方法、联合迭代重构算法、三维分布数值积分方法和抗差-方差分量估计的水汽反演算法。文献[83]对代数重构算法在水汽反演中的应用进行讨论,并通过实验证明该算法能够满足三维水汽反演的要求。

在对层析网格划分,约束信息选取方面,文献[84]对三维水汽层析中网格大小、水平和垂直分辨率选取、观测噪声及不同卫星系统对层析结果的影响进行了详细分析。文献[85]对国内外层析水汽网格划分方法进行描述。文献[86]对不同层析垂直分辨率及层析区域选择方法进行研究,提出了一种优化的区域网格划分方法。文献[8789]针对侧面穿出射线利用问题提出了引入水汽单位指数和比例因子等一系列反演技术。

3 电离层监测和建模方面 3.1 二维电离层建模研究进展

随着全球导航卫星系统(GNSS)技术的快速发展,地基GNSS的全球电离层TEC(total electron content)监测与建模已成为当前的研究热点之一[90-96]。目前,IGS(International GNSS Service)电离层工作组下设7个电离层分析中心,分别是欧洲定轨中心(CODE)、美国喷气推进实验室(JPL)、欧空局(ESA)、西班牙加泰罗尼亚理工大学(UPC),马萨诸塞大学(UML)、中国科学院(CAS)和武汉大学(WUH)。不同机构在二维模型的处理方法上有所差异,JPL在电离层单层模型(single layer model, SLM)假设的基础上,以三角格网内插和双三次样条函数内插的方法建立电离层模型[97]。UPC则是在基于双层电离层假设,以逐基准站准层析的方式建立电离层模型,对于无观测值区域采用克里金插值的方法进行合理外推[98]。CODE、ESA和WHU均采用15阶次的球谐函数(spherical harmonic, SH)在全球范围内建模[99-100],得到时空分辨率为2 h×2.5°(纬度)×5°(经度)的全球电离层VTEC格网。CAS电离层产品首先采用广义三角级数函数逐基准站地建立局部电离层模型,然后采用球谐函数建立全球电离层TEC模型用于保证无观测区域内电离层TEC的合理外推[94-95]

现阶段,地基GNSS仍是电离层探测最重要的技术手段之一,但GNSS基准站大多分布在陆地,南半球海洋和高纬区域几乎没有基准站分布,使得模型在这些区域精度有限。空基电离层探测技术具有精度高、全球均匀覆盖等优点,因此联合地基与空基等多源数据进行电离层建模的研究具有重要意义。文献[101]结合GNSS数据和卫星测高数据进行全球电离层建模,结果表明卫星测高数据可以有效提高模型的精度。文献[93]首次联合地基GNSS、LEO掩星及卫星测高数据进行建模,结果表明模型的RMS降低了0.1TECU。2011年,文献[102]利用地基GNSS、LEO掩星观测值、海洋测高卫星数据和甚长基线干涉VLBI电离层观测值建立区域电离层模型。文献[96, 103]利用地基GNSS观测值、海洋测高卫星、COSMIC及DORIS观测值建立全球电离层模型,并利用赫尔默特方差分量估计对不同观测值精确定权, 模型在海洋地区的精度和可靠性进一步提高。

3.2 三维电离层层析研究进展

电离层二维模型具有估计模型简单、精度高等优点,但是通常假定所有电子集中在一个薄层上,不能反映电离层的空间结构变化。为此,文献[104]在国际上首先提出了电离层层析成像(computerized ionosphere tomography, CIT)的概念,其实现手段主要借助于快速飞行的极轨卫星在短时间内对待探区域的一次断层扫描反演信号传播路径的TEC经度-高度方向分布信息。此后,国内外许多电离层研究者先后在理论和方法上对三维电离层层析技术进行了深入研究,建立了多种电离层层析模型。目前,这些模型大致可分为两类:一类是函数基电离层层析模型[105-109];另一类是像素基电离层层析模型[110-123]

在函数基方面,文献[124]早在1992年就提出用经验正交函数展开表示电离层垂直模式,用球谐函数表示电离层水平模式。文献[125]最早明确给出函数基电离层模型的公式,并利用WAAS (wide area augmentation system)系统的观测数据和随机反演方法,反演了80~580 km高度范围内电子密度的空间分布。文献[126]将函数基层析模型的反演高度范围扩展到整个电离层高度,并利用GPS观测数据和Kalman滤波重构了电离层结构的时空分布。文献[108]基于GPS观测数据,利用B样条基函数和正交函数建立了函数基层析模型,并重构了电离层电子密度的时空分布。文献[127128]研究了一种基于B样条基函数的三维电离层建模方法。文献[129]提出了一种基于Chapman函数的射线追踪层析算法。文献[130]提出了一种附加投影函数的函数基电离层层析算法。

在像素基方面,常用的反演算法有ART(algorithm reconstruction technique)、MART(multiplicative algorithm reconstruction technique)和SIRT(simul-taneous iteration reconstruction technique)[131-132]。为了克服观测信息不足给层析结果带来的不利影响,国内外很多电离层研究者提出了改进的方法。文献[133]联合28个站的GPS/MET掩星数据和IGS提供的全球160个站的观测数据,利用Kalman滤波方法实现了真正意义上的三维层析。文献[134]提出了一种参数化电离层模型辅助的Kalman滤波法。文献[135136]提出三维变分数据同化算法,并在2004年利用该方法,开发了一套电离层电子密度分析程序,该程序可以同化GNSS卫星和测高仪等多手段观测数据。文献[137]提出了广义奇异值分解算法。文献[138]提出了Sobolev正则化约束的SIRT算法。文献[139]提出了融合GPS观测数据和测高仪数据的层析方法。文献[121]提出了一种两步法电离层层析算法。文献[123]发展了一种自适应的联合迭代重构算法,通过自适应地调整松弛因子和加权参数,能够有效地反演电离层电子密度。文献[140]提出过一种附加双网格约束和速度图像的电离层层析算法。文献[141]提出了顾及电离层变化的层析反演新算法,提高了电子密度反演精度。

3.3 电离层监测和应用进展

GNSS二维/多维建模具有常规电离层探测手段(如电离层测高仪)无法比拟的优势。其探测时间和空间分辨率高,精度可靠,所以在电离层监测和预报领域具有广阔的应用前景。电离层的不规则扰动对航天安全、无线电通信、导航定位等有重要的影响,因此监测异常空间天气下的电离层扰动具有重要意义。早在1996年,文献[142]就利用60台GPS观测站求取的GIM图像,对磁暴期间电离层异常现象进行了研究,文献[143]利用层析技术监测了磁暴期间不同高度方向电离层响应机制,GNSS电离层反演手段的出现和发展促进了磁层-热层-电离层耦合机制的研究[144-147]。地震电离层异常,包括震前电离层异常(pre-earthquake ionospheric abnormal,PEIA)和同震电离层异常(coseismic ionospheric disturbances,CID)是近十几年来研究的一个热点之一。地震的电离层前兆第一次引起人们的注意是1965年,文献[148149]首次对1964年Alaskan M9.0地震震区上空电离层扰动进行了研究。早期地震电离层异常的研究主要集中在统计性研究[150-154],随着电离层信息更加多元化和研究的不断深入,地震电离层异常的研究向更加精细的方向发展。文献[155]在研究Chi-Chi地震时利用格网搜索的方法不仅估计出CID传播速度而且确定了CID触发点的地面位置。文献[156]引入了电离层地震学的概念,并从理论上总结了目前地震电离层异常扰动物理机理的研究成果,同时指出该学科将是未来几十年具有挑战性的热门研究课题。随着GNSS连续运行站在全球范围内数量的不断增加及电离层层析算法的不断完善和发展,GNSS电离层监测必将在空间物理研究等领域发挥更加积极的作用。

4 GNSS空间环境学未来研究和展望 4.1 对流层建模展望

在对流层建模方面,基于气象参数的对流层延迟模型与利用GNSS观测数据建立的对流层延迟模型相比,精度仍然存在着一定的差距,主要是在ZWD的计算方面精度不足。倘若能够继续提高利用实测气象参数计算ZWD的精度,使其接近于GNSS能够获取的精度,对于大范围、密集、高精度监测对流层或水汽具有重大的意义,能够节省大量的成本。另外,目前还未开展对不同对流层观测值的实时融合研究,利用廉价的气象观测设备来加密GNSS网从而对对流层实现更密集的监测,所以研究最优的融合算法,将不同精度、不同数据源的对流层观测值进行融合得到精度更优、水平分辨率更高的对流层模型产品具有重要的意义。

4.2 对流层水汽反演及应用展望

基于GNSS对流层水汽反演已经较为成熟,但对于其在气象等方面的应用仍待研究。对于二维水汽信息进行降雨预报来讲,一方面可以对某区域多个测站的观测数据进行联合处理,以期得到更为准确、全面的预报结果;另一方面,大气水汽与温度息息相关,可以通过分析降雨前后水汽与温度的相关关系,建立一个更为合理和精确的多因子短临降雨预报模型。在全球范围内通过融合多源观测数据(地基和空基GNSS观测数据、无线电探空仪数据、COSMIC数据和ECMWF再分析资料等)对大尺度中长期的二维水汽信息进行分析和研究,探究全球水汽变化演变机理,识别重大气候灾害致灾因子,对中长尺度气候灾害事件进行监测和预报。在三维水汽产品方面,可将GNSS三维对流层产品与WRF模式数值同化,对WRF模式中数据同化系统模块进行改进,弥补地表常规资料和高空探测资料的不足,进一步提高WRF模式的预报能力。

此外,大量研究均已表明基于GNSS反演水汽的能力及优越性,如何进一步拓展GNSS水汽产品在气象学上的应用也是重点研究方向之一。

4.3 电离层监测和建模展望

在精化全球电离层模型方面,多系统多源数据融合将成为下一步研究的重点。在建立电离层模型时,笔者认为应进一步考虑伽利略系统、北斗系统等多系统数据对建模的贡献,同时要考虑不同系统及不同频率间的组合定权问题。另外,电离层高阶项与磁场分布强度密切相关,而全球磁场的分布不一致,因此电离层高阶项对模型精度的影响也有待进一步的研究。电离层层析算法方面,基于1 Hz及50 Hz的高频、多系统GNSS数据进行高时间分辨率的电离层层析反演,进一步结合非相干散射雷达、测高仪及InSAR技术进行三维层析的优化,优化层析算法提高电离层层析模型的可靠性和精度,特别是提高层析模型空间分辨率和时间分辨率。在电离层应用研究方面,在现象提取、统计的基础上,应深入研究电离层异常触发、传播的物理机制。如地震电离层异常研究,可以结合破裂面分析、岩石圈-大气层-电离层的耦合机制进行综合研究,地震通过瑞利波、声重波、海啸波等对电离层产生作用,今后的研究中将结合此类观测数据对电离层异常进行相关分析,验证相关理论的准确性。


参考文献
[1] COLLINS J P, LANGLEY R B. A Tropospheric Delay Model for the User of the Wide Area Augmentation System[R]. Final Contract Report for Nav Canada, Department of Geodesy and Geomatics Engineering Technical Report No.187. Fredericton:University of New Brunswick, 1997.
[2] COLLINS J P, LANGLEY R B. The Residual Tropospheric Propagation Delay:How Bad Can It Get?[C]//Proceedings of the 11th International Technical Meeting of the Satellite Division of the Institute of Navigation. Nashville, Tennessee:[s.n.], 1998.
[3] MOPS W. Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment[R]. Documentation No. RTCA/DO-229B. Washington:RTCA Inc., 1999:6.
[4] PENNA N, DODSON A, CHEN Wu. Assessment of EGNOS Tropospheric Correction Model[J]. The Journal of Navigation, 2001, 54(1): 37–55. DOI:10.1017/S0373463300001107
[5] UENO M, HOSHINOO K, MATSUNAGA K, et al. Assessment of Atmospheric Delay Correction Models for the Japanese MSAS[C]//Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation. Salt Lake City, UT:[s.n.], 2001.
[6] KRUEGER E, SCHVELER T, HEIN G W, et al. Galileo Tropospheric Correction Approaches Developed within GSTB-V1[C]//Proceedings of 2004 ENC-GNSS. Rotterdam:[s.n.], 2004.
[7] BOEHM J, HEINKELMANN R, SCHUH H. Short Note:A Global Model of Pressure and Temperature for Geodetic Applications[J]. Journal of Geodesy, 2007, 81(10): 679–683. DOI:10.1007/s00190-007-0135-3
[8] KOUBA J. Testing of Global Pressure/Temperature (GPT) Model and Global Mapping Function (GMF) in GPS Analyses[J]. Journal of Geodesy, 2009, 83(3-4): 199–208. DOI:10.1007/s00190-008-0229-6
[9] PETIT G, LUZUM B. IERS Conventions (2010)[R]. IERS Technical Note 36. Frankfurt am Main:IERS, 2010:1-95.
[10] 陈澍, 熊永良, 张绪丰, 等. GPS水汽反演技术在四川地区的应用研究[J]. 全球定位系统, 2011, 36(1): 32–37. CHEN Shu, XIONG Yongliang, ZHANG Xufeng, et al. Application of GPS Water Vapor Inversion Technology in Sichuan Area[J]. Gnss World of China, 2011, 36(1): 32–37.
[11] 鄢子平, 吕翠仙, 何锡扬, 等. 基于PPP的对流层延迟估计方法及其影响因素分析[J]. 大地测量与地球动力学, 2011, 31(2): 107–110, 116. YAN Ziping, LÜ Cuixian, HE Xiyang, et al. Estimation of Zenith Path Delay Based on PPP and Analysis of Its Influence Factor[J]. Journal of Geodesy and Geodynamics, 2011, 31(2): 107–110, 116.
[12] 于胜杰, 万蓉, 付志康. 气压对GPS大气可降水量解算的影响分析[J]. 大地测量与地球动力学, 2013, 33(2): 87–90, 95. YU Shengjie, WAN Rong, FU Zhikang. Impact Analysis of Pressure Parameter on Inversion of GPS Precipitable Water Vapor[J]. Journal of Geodesy and Geodynamics, 2013, 33(2): 87–90, 95.
[13] 杨徉, 喻国荣, 潘树国, 等. 一种综合的对流层延迟模型算法[J]. 东南大学学报(自然科学版), 2013, 43(S2): 418–422. YANG Yang, YU Guorong, PAN Shuguo, et al. A Comprehensive Algorithm Using Fusion of Tropospheric Delay Models[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S2): 418–422.
[14] 王君刚, 陈俊平, 王解先. 对流层模型在中国区域的精度评估[C]//2014年中国地球科学联合学术年会——专题26: 卫星导航技术及其在地球科学应用论文集. 北京: 中国地球物理学会, 2014. WANG Jungang, CHEN Junping, WANG Jiexian. Accuracy Assessment of the Troposphere Model in China[C]//Annual meeting of Chinese Geoscience Union (CGU). Beijing:Chinese Geophysical Society, 2014.
[15] LI Wei, YUAN Yunbin, OU Jikun, et al. A New Global Zenith Tropospheric Delay Model IGGtrop for GNSS Applications[J]. Chinese Science Bulletin, 2012, 57(17): 2132–2139. DOI:10.1007/s11434-012-5010-9
[16] LI Wei, YUAN Yunbin, OU Jikun, et al. New Versions of the BDS/GNSS Zenith Tropospheric Delay Model IGGtrop[J]. Journal of Geodesy, 2015, 89(1): 73–80. DOI:10.1007/s00190-014-0761-5
[17] LAGLER K, SCHINDELEGGER M, BÖHM J, et al. GPT2:Empirical Slant Delay Model for Radio Space Geodetic Techniques[J]. Geophysical Research Letters, 2013, 40(6): 1069–1073. DOI:10.1002/grl.50288
[18] SCHVLER T. The Trop Grid2 Standard Tropospheric Correction Model[J]. GPS Solutions, 2014, 18(1): 123–131. DOI:10.1007/s10291-013-0316-x
[19] BÖHM J, MÖLLER G, SCHINDELEGGER M, et al. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433–441. DOI:10.1007/s10291-014-0403-7
[20] 姚宜斌, 曹娜, 许超钤, 等. GPT2模型的精度检验与分析[J]. 测绘学报, 2015, 44(7): 726–733. YAO Yibin, CAO Na, XU Chaoqian, et al. Accuracy Assessment and Analysis for GPT2[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7): 726–733. DOI:10.11947/j.AGCS.2015.20140356
[21] 范士杰, 臧建飞, 刘焱雄, 等. GPT/2模型用于GPS大气可降水汽反演的精度分析[J]. 测绘工程, 2016, 25(3): 1–5. FAN Shijie, ZANG Jianfei, LIU Yanxiong, et al. Accuracy Analysis on GPS Precipitable Water Vapor Inversion Using GPT/2 Models[J]. Engineering of Surveying and Mapping, 2016, 25(3): 1–5.
[22] 王君刚, 陈俊平, 王解先, 等. 对流层经验改正模型在中国区域的精度评估[J]. 武汉大学学报(信息科学版), 2016, 41(12): 1656–1663. WANG Jungang, CHEN Junping, WANG Jiexian, et al. Assessment of Tropospheric Delay Correction Models over China[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1656–1663.
[23] HOPFIELD H S. Two-Quartic Tropospheric Refractivity Profile for Correcting Satellite Data[J]. Journal of Geophysical Research, 1969, 74(18): 4487–4499. DOI:10.1029/JC074i018p04487
[24] SAASTAMOINEN J. Contributions to the Theory of Atmospheric Refraction[J]. Bulletin Géodésique (1946-1975), 1972, 105(1): 279–298. DOI:10.1007/BF02521844
[25] IFADIS I I. The Atmospheric Delay of Radio Waves:Modeling the Elevation Dependence on a Global Scale[R]. Technical Report No. 38L. G teburg, Sweden:Chalmers University of Technology, 1986. http://www.sciencedirect.com/science/article/pii/S1110982316300229
[26] ASKNE J, NORDIUS H. Estimation of Tropospheric Delay for Microwaves from Surface Weather Data[J]. Radio Science, 1987, 22(3): 379–386. DOI:10.1029/RS022i003p00379
[27] 曲伟菁, 朱文耀, 宋淑丽, 等. 三种对流层延迟改正模型精度评估[J]. 天文学报, 2008, 49(1): 113–122. QU Weijing, ZHU Wenyao, SONG Shuli, et al. The Evaluation of Precision about Hopfield, Saastamoinen and Egnos Tropospheric Delay Correction Model[J]. Acta Astronomica Sinica, 2008, 49(1): 113–122.
[28] MARINI J W. Correction of Satellite Tracking Data for an Arbitrary Tropospheric Profile[J]. Radio Science, 1972, 7(2): 223–231. DOI:10.1029/RS007i002p00223
[29] HERRING T A. Modeling Atmospheric Delays in the Analysis of Space Geodetic Data[M]//DEMUNKAND J C, SPOELSTRA T A. Refraction of Transatmospheric Signals in Geodesy, Number 36. The Hague, Netherlands:Netherlands Geodetic Commission Publications in Geodesy, 1992:157-164.
[30] NIELL A E. Global Mapping Functions for the Atmosphere Delay at Radio Wavelengths[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B2): 3227–3246. DOI:10.1029/95JB03048
[31] NIELL A E. Preliminary Evaluation of Atmospheric Mapping Functions Based on Numerical Weather Models[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 2001, 26(6-8): 475–480. DOI:10.1016/S1464-1895(01)00087-4
[32] BOEHM J, WERL B, SCHUH H. Troposphere Mapping Functions for GPS and Very Long Baseline Interferometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B2): B02406. DOI:10.1029/2005JB003629
[33] JIANG Weiping, ZOU Xuan. On Error of Atmospheric Models in GPS Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1106–1109, 1197.
[34] BOEHM J, NIELL A, TREGONING P, et al. Global Mapping Function (GMF):A New Empirical Mapping Function Based on Numerical Weather Model Data[J]. Geophysical Research Letters, 2006, 33(7): L07304.
[35] ROCKEN C, WARE R, VAN HOVE T, et al. Sensing Atmospheric Water Vapor with the Global Positioning System[J]. Geophysical Research Letters, 2013, 20(23): 2631–2634.
[36] TAO W. Near real-time GPS PPP-inferred water vapor system development and evaluation[D]. Calgary:University of Calgary, 2008. http://www.sciencedirect.com/science/article/pii/S0273117712004450
[37] 叶世榕, 张双成, 刘经南. 精密单点定位方法估计对流层延迟精度分析[J]. 武汉大学学报(信息科学版), 2008, 33(8): 788–791. YE Shirong, ZHANG Shuangcheng, LIU Jingnan. Precision Analysis of Precise Point Positioning Based Tropospheric Delay Estimation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 788–791.
[38] 王敏, 柴洪洲, 谢恺, 等. 基于CNES实时轨道钟差数据反演大气可降水量[J]. 大地测量与地球动力学, 2013, 33(1): 137–140. WANG Min, CHAI Hongzhou, XIE Kai, et al. PWV Inversion Based on CNES Real-time Orbits and Clocks[J]. Journal of Geodesy and Geodynamics, 2013, 33(1): 137–140.
[39] DAI L. Augmentation of GPS with GLONASS and Pseudolite Signals for Carrier Phase-based Kinematic Positioning[D]. Sydney:University of New South Wales, 2002. http://file.scirp.org/pdf/nav20050100015_40491657.pdf
[40] XIONG Yongliang, HUANG Dingfa, DING Xiaoli, et al. Research on the Modeling of Tropospheric Delay in Virtual Reference Station[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(2): 118–121. DOI:10.3321/j.issn:1001-1595.2006.02.005
[41] ZHANG Xiaohong, ZHU Feng, LI Pan, et al. Zenith Troposphere Delay Interpolation Model for Regional CORS Network Augmented PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 679–683.
[42] BEVIS M, BUSINGER S, HERRING T A, et al. GPS Meteorology:Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14): 15787–15801. DOI:10.1029/92JD01517
[43] DUAN Jingping, BEVIS M, FANG Peng, et al. GPS Meteorology:Direct Estimation of the Absolute Value of Precipitable Water[J]. Journal of Applied Meteorology, 1996, 35(6): 830–838. DOI:10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2
[44] ELGERED G, JOHANSSON J M, RÖNNÄNG B, et al. Measuring Regional Atmospheric Water Vapor Using the Swedish Permanent GPS Network[J]. Geophysical Research Letters, 1997, 24(21): 2663–2666. DOI:10.1029/97GL02798
[45] 刘焱雄, IZH B, 陈永奇. 地基GPS技术遥感香港地区大气水汽含量[J]. 武汉测绘科技大学学报, 1999, 24(3): 245–248. LIU Yanxiong, IZ H B, CHEN Yongqi. Monitoring the Water Vapor Content in the Atmosphere in Hong Kong Through Ground-Based GPS Technique[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1999, 24(3): 245–248.
[46] 程晓, 徐冠华, 周春霞, 等. 应用GPS资料反演南极大气可降水量的试验分析[J]. 极地研究, 2002, 14(2): 136–144. CHENG Xiao, XU Guanhua, ZHOU Chunxia, et al. Application of GPS Technology to Meteorology in Antarctic[J]. Chinese Journal of Polar Research, 2002, 14(2): 136–144.
[47] 毕研盟. 应用全球定位系统(GPS)遥感大气水汽的研究[D]. 北京. 北京大学, 2006: 58-63. BI Yanmeng. Research of Remote Sensing of Atmospheric Water Vapor Using Global Positioning System (GPS)[D]. Beijing:Peking University, 2006:58-63.
[48] 张双成, 刘经南, 叶世榕, 等. 顾及双差残差反演GPS信号方向的斜路径水汽含量[J]. 武汉大学学报(信息科学版), 2009, 34(1): 100–104. ZHANG Shuangcheng, LIU Jingnan, YE Shirong, et al. Retrieval of Water Vapor along the GPS Slant Path Based on Double-differenced Residuals[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 100–104.
[49] 范士杰, 刘焱雄, 高兴国, 等. 顾及星间单差残差的GPS斜路径水汽含量估计[J]. 武汉大学学报(信息科学版), 2012, 37(7): 834–838. FAN Shijie, LIU Yanxiong, GAO Xingguo, et al. Estimate of GPS Slant-path Water Vapor Based on Single-differenced Residuals between Satellites[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 834–838.
[50] ADAMS D K, FERNANDES R M S, MAIA J M F. GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(10): 1192–1198. DOI:10.1175/JTECH-D-11-00082.1
[51] WARE R, ALBER C, ROCKEN C, et al. Sensing Integrated Water Vapor Along GPS Ray Paths[J]. Geophysical Research Letters, 1997, 24(4): 417–420. DOI:10.1029/97GL00080
[52] 郭巍, 尹球, 杜明斌, 等. 利用地基北斗站反演大气水汽总量的精度检验[J]. 应用气象学报, 2015, 26(3): 346–353. GUO Wei, YIN Qiu, DU Mingbin. The Accuracy Test of Retrieved Precipitation Water Vapor Based on BeiDou Observations[J]. Journal of Applied Meteorological Science, 2015, 26(3): 346–353. DOI:10.11898/1001-7313.20150310
[53] 施闯, 王海深, 曹云昌, 等. 基于北斗卫星的水汽探测性能分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 285–289. SHI Chuang, WANG Haishen, CAO Yunchang, et al. Analysis on Performance of Water Vapor Detection Based on BeiDou Satellite[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 285–289.
[54] BRAUN J, ROCKEN C, MEERTENS C, et al. Development of a Water Vapor Tomography System Using Low Cost L1 GPS Receivers[C]//Proceedings of the 9th ARM Science Team Meeting. San Antonio, Texas:US Department of Energy, 1999:22-26.
[55] FLORES A, RUFFINI G, RIUS A. 4D Tropospheric Tomography Using GPS Slant Wet Delays[J]. Annales Geophysicae, 2000, 18(2): 223–234. DOI:10.1007/s00585-000-0223-7
[56] TROLLER M, BüRKI B, COCARD M, et al. 3D Refractivity Field from GPS Double Difference Tomography[J]. Geophysical Research Letters, 2002, 29(24): 21–24. DOI:10.1029/2002GL015982
[57] CAO Yunchang, CHEN Yongqi, LI P. Wet Refractivity Tomography with An Improved Kalman-Filter Method[J]. Advances in Atmospheric Sciences, 2006, 23(5): 693–699. DOI:10.1007/s00376-006-0693-y
[58] 王久珂, 刘晓阳, 毛节泰, 等. GPS蒙特卡罗三维水汽层析算法敏感性试验和研究[J]. 北京大学学报(自然科学版), 2014, 50(6): 1044–1052. WANG Jiuke, LIU Xiaoyang, MAO Jietai, et al. Sensitivity Experiment of Monte Carlo Tomography Algorithm of Water Vapor Using GPS Data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1044–1052.
[59] 曹玉静, 刘晶淼, 廖荣伟, 等. 两种垂直分层方法对GPS水汽层析结果的影响[J]. 气象与环境学报, 2014, 30(6): 125–133. CAO Yujing, LIU Jingmiao, LIAO Rongwei, et al. Effect of Two Vertical Stratification Methods of GPS Tomography Grid on GPS Water Vapor Tomography Result[J]. Journal of Meteorology and Environment, 2014, 30(6): 125–133.
[60] BENDER M, RAABE A. Preconditions to Ground Based GPS Water Vapour Tomography[J]. Annales Geophysicae, 2007, 25(8): 1727–1734. DOI:10.5194/angeo-25-1727-2007
[61] BENDER M, STOSIUS R, ZUS F, et al. GNSS Water Vapour Tomography-expected Improvements by Combining GPS, GLONASS and Galileo Observations[J]. Advances in Space Research, 2011, 47(5): 886–897. DOI:10.1016/j.asr.2010.09.011
[62] 夏朋飞, 蔡昌盛, 戴吾蛟, 等. 地基GPS联合COSMIC掩星数据的水汽三维层析研究[J]. 武汉大学学报(信息科学版), 2013, 38(8): 892–896. XIA Pengfei, CAI Changsheng, DAI Wujiao, et al. Three-dimensional Water Vapor Tomography Using Ground-based GPS and COSMIC Occultation Observations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 892–896.
[63] ALSHAWAF F. Constructing Water Vapor Maps by Fusing InSAR, GNSS and WRF Data[D]. Karlsruhe, Germany:Karlsruher Institute of Technology, 2013.
[64] HEUBLEIN M, ZHU Xiaoxiang, ALSHAWAF F, et al. Compressive Sensing for Neutrospheric Water Vapor Tomography Using GNSS and InSAR Observations[C]//Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy:IEEE, 2015:5268-5271.
[65] BENEVIDES P, NICO G, CATALAO J, et al. Merging SAR Interferometry and GPS Tomography for High-resolution Mapping of 3D Tropospheric Water Vapour[C]//Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy:IEEE, 2015:3607-3610.
[66] HIRAHARA K. Local GPS Tropospheric Tomography[J]. Earth, Planets and Space, 2000, 52(11): 935–939. DOI:10.1186/BF03352308
[67] MⅡDLA P, RANNAT K, UBA P. A Mathematical Model of Troposphere Water Vapor Tomography[C]//Proceedings of the 2nd International Conference on Environmental and Computer Science. Dubai, United Arab Emirates:IEEE, 2009:183-187.
[68] MⅡDLA P, RANNAT K, UBA P. Tomographic Approach for Tropospheric Water Vapor Detection[J]. Computational Methods in Applied Mathematics, 2008, 8(3): 263–278.
[69] 宋淑丽, 朱文耀, 廖新浩. 地基GPS气象学研究的主要问题及最新进展[J]. 地球科学进展, 2004, 19(2): 250–259. SONG Shuli, ZHU Wenyao, LIAO Xinhao. The Main Problems and New Advances in Ground-based GPS Meteorology[J]. Advance in Earth Sciences, 2004, 19(2): 250–259.
[70] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海: 中国科学院(上海天文台), 2004. SONG Shuli. Sensing Three Dimensional Water Vapor Structure with Ground-based GPS Network and the Application in Meteorology[D]. Shanghai:Shanghai Astronomical Observatory (Chinese Academy of Science), 2004. http://cdmd.cnki.com.cn/Article/CDMD-80022-2004139591.htm
[71] 宋淑丽, 朱文耀, 丁金才, 等. 上海GPS网层析水汽三维分布改善数值预报湿度场[J]. 科学通报, 2006, 50(20): 607–614. SONG Shuli, ZHU Wenyao, DING Jincai, et al. 3D Water-vapor Tomography with Shanghai GPS Network to Improve Forecasted Moisture Field[J]. Chinese Science Bulletin, 2006, 50(20): 607–614.
[72] BRAUN J, ROCKEN C, LILJEGREN J. Comparisons of Line-of-sight Water Vapor Observations Using the Global Positioning System and a Pointing Microwave Radiometer[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 606–612. DOI:10.1175/1520-0426(2003)20<606:COLOSW>2.0.CO;2
[73] BRAUN J J. Remote Sensing of Atmospheric Water Vapor with the Global Positioning System[J]. Geophysical Research Letters, 2004, 20(23): 2631–2634.
[74] PERLER D, GEIGER A, HURTER F. 4D GPS Water Vapor Tomography:New Parameterized Approaches[J]. Journal of Geodesy, 2011, 85(8): 539–550. DOI:10.1007/s00190-011-0454-2
[75] 张双成, 叶世榕, 万蓉, 等. 基于Kalman滤波的断层扫描初步层析水汽湿折射率分布[J]. 武汉大学学报(信息科学版), 2008, 33(8): 796–799. ZHANG Shuangcheng, YE Shirong, WAN Rong, et al. Preliminary Tomography Spatial Wet Refractivity Distribution Based on Kalman Filter[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 796–799.
[76] 毕研盟, 杨光林, 聂晶. 基于Kalman滤波的GPS水汽层析方法及其应用[J]. 高原气象, 2011, 30(1): 109–114. BI Yanmeng, YANG Guanglin, NIE Jing. Method of GPS Water Vapor Tomography Based on Kalman Filter and Its Application[J]. Plateau Meteorology, 2011, 30(1): 109–114.
[77] 王维, 王解先. 基于代数重构技术的对流层水汽层析[J]. 计算机应用, 2011, 31(11): 3149–3151, 3156. WANG Wei, WANG Jiexian. Ground-based GPS Water Vapor Tomography Based on Algebraic Reconstruction Technique[J]. Journal of Computer Applications, 2011, 31(11): 3149–3151, 3156.
[78] 于胜杰, 柳林涛. 利用选权拟合法进行GPS水汽层析解算[J]. 武汉大学学报(信息科学版), 2012, 37(2): 183–186, 204. YU Shengjie, LIU Lintao. Application of Fitting Method by Selection of the Parameter Weights on GPS Water Vapor Tomography[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 183–186, 204.
[79] 江鹏, 叶世榕, 何书镜, 等. 自适应Kalman滤波用于GPS层析大气湿折射率[J]. 武汉大学学报(信息科学版), 2013, 38(3): 299–302. JIANG Peng, YE Shirong, HE Shujing, et al. Ground-based GPS Tomography of Wet Refractivity with Adaptive Kalman Filter[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 299–302.
[80] 叶世榕, 江鹏, 刘炎炎. 地基GPS网层析水汽三维分布数值积分方法[J]. 测绘学报, 2013, 42(5): 654–660. YE Shirong, JIANG Peng, LIU Yanyan. A Water Vapor Tomographic Numerical Quadrature Approach with Ground-based GPS Network[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 654–660.
[81] 张双成, 张鹏飞, 张勤, 等. 顾及抗差方差分量的地基GPS层析水汽空间分布算法研究[J]. 武汉大学学报(信息科学版), 2013, 38(2): 144–147. ZHANG Shuangcheng, ZHANG Pengfei, ZHANG Qin, et al. Ground-based GPS Tomography Spatial Water Vapor Distribution with Robust Variance Components Estimation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 144–147.
[82] WANG Xiaoying, DAI Ziqiang, ZHANG Enhong, et al. Tropospheric Wet Refractivity Tomography Using Multiplicative Algebraic Reconstruction Technique[J]. Advances in Space Research, 2014, 53(1): 156–162. DOI:10.1016/j.asr.2013.10.012
[83] 何林, 柳林涛, 苏晓庆, 等. 水汽层析代数重构算法[J]. 测绘学报, 2015, 44(1): 32–38. HE Lin, LIU Lintao, SU Xiaoqing, et al. Algebraic Reconstruction Algorithm of Vapor Tomography[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1): 32–38. DOI:10.11947/j.AGCS.2015.20130308
[84] NILSSON T, GRADINARSKY L. Water Vapor Tomography Using GPS Phase Observations:Simulation Results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2927–2941. DOI:10.1109/TGRS.2006.877755
[85] 曹玉静, 刘晶淼, 梁宏, 等. 基于地基GPS层析大气水汽资源的方法研究[J]. 自然资源学报, 2010, 25(10): 1786–1796. CAO Yujing, LIU Jingmiao, LIANG Hong, et al. Progress in Ground-based GPS Tomographying Atmospheric Water Vapor Resource[J]. Journal of Natural Resources, 2010, 25(10): 1786–1796. DOI:10.11849/zrzyxb.2010.10.016
[86] CHEN Biyan, LIU Zhizhao. Voxel-optimized Regional Water Vapor Tomography and Comparison with Radiosonde and Numerical Weather Model[J]. Journal of Geodesy, 2014, 88(7): 691–703. DOI:10.1007/s00190-014-0715-y
[87] YAO Yibin, ZHAO Qingzhi. Maximally Using GPS Observation for Water Vapor Tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7185–7196. DOI:10.1109/TGRS.2016.2597241
[88] YAO Y B, ZHAO Q Z, ZHANG B. A Method to Improve the Utilization of GNSS Observation for Water Vapor Tomography[J]. Annales Geophysicae, 2016, 34(1): 143–152. DOI:10.5194/angeo-34-143-2016
[89] YAO Yibin, ZHAO Qingzhi. A Novel, Optimized Approach of Voxel Division for Water Vapor Tomography[J]. Meteorology and Atmospheric Physics, 2017, 129(1): 57–70. DOI:10.1007/s00703-016-0450-4
[90] LANYI G E, ROTH T. A Comparison of Mapped and Measured Total Ionospheric Electron Content Using Global Positioning System and Beacon Satellite Observations[J]. Radio Science, 1988, 23(4): 483–492. DOI:10.1029/RS023i004p00483
[91] YUAN Y, TSCHERNING C C, KNUDSEN P, et al. The Ionospheric Eclipse Factor Method (IEFM) and Its Application to Determining the Ionospheric Delay for GPS[J]. Journal of Geodesy, 2008, 82(1): 1–8. DOI:10.1007/s00190-007-0152-2
[92] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. The IGS VTEC Maps:A Reliable Source of Ionospheric Information Since 1998[J]. Journal of Geodesy, 2009, 83(3-4): 263–275. DOI:10.1007/s00190-008-0266-1
[93] ALIZADEH M M, SCHUH H, TODOROVA S, et al. Global Ionosphere Maps of VTEC from GNSS, Satellite Altimetry, and Formosat-3/COSMIC Data[J]. Journal of Geodesy, 2011, 85(12): 975–987. DOI:10.1007/s00190-011-0449-z
[94] LI Zishen, YUAN Yunbin, LI Hui, et al. Two-Step Method for the Determination of the Differential Code Biases of COMPASS Satellites[J]. Journal of Geodesy, 2012, 86(11): 1059–1076. DOI:10.1007/s00190-012-0565-4
[95] LI Zishen, YUAN Yunbin, WANG Ningbo, et al. SHPTS:Towards A New Method for Generating Precise Global Ionospheric TEC Map Based on Spherical Harmonic and Generalized Trigonometric Series Functions[J]. Journal of Geodesy, 2015, 89(4): 331–345. DOI:10.1007/s00190-014-0778-9
[96] CHEN Peng, YAO Yibin, YAO Wanqiang. Global Ionosphere Maps Based on GNSS, Satellite Altimetry, Radio Occultation and DORIS[J]. GPS Solutions, 2017, 21(2): 639–650. DOI:10.1007/s10291-016-0554-9
[97] MANNUCCI A J, WILSON B D, YUAN D N, et al. A Global Mapping Technique for GPS-Derived Ionospheric Total Electron Content Measurements[J]. Radio Science, 1998, 33(3): 565–582. DOI:10.1029/97RS02707
[98] ORUÚS R, HERNÁNDEZ-PAJARES M, JUAN J M, et al. Current Status and Expected Improvements of Ionospheric Reprocessing[M]. Darmstadt: IGS Workshop, 2006.
[99] SCHAER S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System[D]. Switzerland:University of Berne, 1999:59. https://link.springer.com/article/10.1007/s10291-010-0174-8
[100] ZHANG Hongping, XU Peiliang, HANWenhui, et al. Eliminating Negative VTEC in Global Ionosphere Maps Using Inequality-Constrained Least Squares[J]. Advances in Space Research, 2013, 51(6): 988–1000. DOI:10.1016/j.asr.2012.06.026
[101] TODOROVA S, SCHUH H, HOBIGER T, et al. Global Models of the Ionosphere Obtained by Integration of GNSS and Satellite Altimetry Data[J]. Vermessung & Geoinformation, 2007, 2: 80–89.
[102] DETTMERING D, SCHMIDT M, HEINKELMANN R, et al. Combination of Different Space-geodetic Observations for Regional Ionosphere Modeling[J]. Journal of Geodesy, 2011, 85(12): 989–998. DOI:10.1007/s00190-010-0423-1
[103] CHEN Peng, YAO Wenqiang, ZHU Xunjun. Combination of Ground and Space-based Data to Establish a Global Ionospheric Grid Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1073–1081. DOI:10.1109/TGRS.2014.2333522
[104] AUSTEN J R, FRANKE S J, LIU C H, et al. Application of Computerized Tomography Techniques to Ionospheric Research[C]//International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop. Oulu, Finland:University of Oulu, 1986:25-35.
[105] HANSEN A J, WALTER T, ENGE P. Ionospheric Correction Using Tomography[C]//Proceedings of Institute of Navigation ION GPS-97. Kansas City:[s.n.], 1997:249-257.
[106] HANSEN A J. Real-Time Ionospheric Tomography Using Terrestrial GPS Sensors[C]//Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation. Nashville, TN:[s.n.], 1998:717-727.
[107] 耿长江. 利用地基GNSS数据实时监测电离层延迟理论与方法研究[D]. 武汉: 武汉大学, 2011. GENG Changjiang. Theory and Method on Real Time Monitoring of Ionospheric Delay Using Ground Based GNSS Data[D]. Wuhan:Wuhan University, 2011.
[108] AMERIAN Y, HOSSAINALI M M, VOOSOGHI B. Regional Improvement of IRI Extracted Ionospheric Electron Density by Compactly Supported Base Functions Using GPS Observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2013(92): 23–30.
[109] KONG Jian, YAO Yibin, LIU Lei, et al. A New Computerized Ionosphere Tomography Model Using the Mapping Function and an Application to the Study of Seismic-ionosphere Disturbance[J]. Journal of Geodesy, 2016, 90(8): 741–755. DOI:10.1007/s00190-016-0906-9
[110] RIUS A, RUFFINI G, CUCURULL L. Improving the Vertical Resolution of Ionospheric Tomography with GPS Occultations[J]. Geophysical Research Letters, 1997, 24(18): 2291–2294. DOI:10.1029/97GL52283
[111] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. Global Observation of the Ionospheric Electronic Response to Solar Events Using Ground and LEO GPS Data[J]. Journal of Geophysical Research:Space Physics, 1998, 103(A9): 20789–20796. DOI:10.1029/98JA01272
[112] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J. New Approaches in Global Ionospheric Determination Using Ground GPS Data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61(16): 1237–1247. DOI:10.1016/S1364-6826(99)00054-1
[113] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. Application of Ionospheric Tomography to Real-Time GPS Carrier-Phase Ambiguities Resolution, at Scales of 400-1000km and with High Geomagnetic Activity[J]. Geophysical Research Letters, 2000, 27(13): 2009–2012. DOI:10.1029/1999GL011239
[114] 徐继生, 邹玉华. 时变三维电离层层析成像重建公式[J]. 地球物理学报, 2003, 46(4): 438–445. XU Jisheng, ZOU Yuhua. Reconstruction Formula of Time-dependent 3D Computerized Ionospheric Tomography[J]. Chinese Journal of Geophysics, 2003, 46(4): 438–445.
[115] 徐继生, 邹玉华, 马淑英. GPS地面台网和掩星观测结合的时变三维电离层层析[J]. 地球物理学报, 2005, 48(4): 759–767. XU Jisheng, ZOU Yuhua, MA Shuying. Time-Dependent 3D Computerized Ionospheric Tomography with Ground-based GPS Network and Occultation Observations[J]. Chinese Journal of Geophysics, 2005, 48(4): 759–767.
[116] LEE J K, KAMALABADI F, MAKELA J J. Localized Three-Dimensional Ionospheric Tomography with GPS Ground Receiver Measurements[J]. Radio Science, 2016, 42(4): RS4018.
[117] LEE J K, KAMALABADI F, MAKELA J J. Three-dimensional Tomography of Ionospheric Variability Using a Dense GPS Receiver Array[J]. Radio Science, 2008, 43(3): RS3001.
[118] MA X F, MARUYAMA T, MA G, et al. Three-Dimensional Ionospheric Tomography Using Observation Data of GPS Ground Receivers and Ionosonde by Neural Network[J]. Journal of Geophysical Research:Space Physics, 2005, 110(A5): A05308.
[119] WEN Debao, YUAN Yunbin, OU Jikun, et al. Three-dimensional Ionospheric Tomography by an Improved Algebraic Reconstruction Technique[J]. GPS Solutions, 2007, 11(4): 251–258. DOI:10.1007/s10291-007-0055-y
[120] WEN Debao, YUAN Yunbin, OU Jikun, et al. A Hybrid Reconstruction Algorithm for 3D Ionospheric Tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1733–1739. DOI:10.1109/TGRS.2008.916466
[121] WEN Debao, WANG Yong, NORMAN R. A New Two-Step Algorithm for Ionospheric Tomography Solution[J]. GPS Solutions, 2012, 16(1): 89–94. DOI:10.1007/s10291-011-0211-2
[122] 李慧. 基于GNSS的三维电离层层析反演算法研究[D]. 武汉: 中国科学院测量与地球物理研究所, 2012. LI Hui. Studies on Three-dimension Ionospheric Tomography Using GNSS Measurements[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Science, 2012.
[123] 姚宜斌, 汤俊, 张良, 等. 电离层三维层析成像的自适应联合迭代重构算法[J]. 地球物理学报, 2014, 57(2): 345–353. YAO Yibin, TANG Jun, ZHANG Liang, et al. An Adaptive Simultaneous Iteration Reconstruction Technique for Three-Dimensional Ionospheric Tomography[J]. Chinese Journal of Geophysics, 2014, 57(2): 345–353. DOI:10.6038/cjg20140201
[124] FREMOUW E J, SECAN J A, HOWE B M. Application of Stochastic Inverse Theory to Ionospheric Tomography[J]. Radio Science, 1992, 27(5): 721–732. DOI:10.1029/92RS00515
[125] HANSEN A J, WALTER T, ENGE P. Ionospheric Correction Using Tomography[C]//Proceedings of the Institute of Navigation ION GPS-97. Kansas City:[s.n.], 1997:249-257.
[126] HOWE B M, RUNCIMAN K, SECAN J A. Tomography of the Ionosphere:Four-dimensional Simulations[J]. Radio Science, 1998, 33(1): 109–128. DOI:10.1029/97RS02615
[127] SCHMIDT M, BILITZA D, SHUM C, et al. Regional 4D Modelling of the Ionospheric Electron Density[C]//Proceedings of the 36th COSPAR Scientific Assembly. Beijing, China:ADS, 2006:782-790.
[128] LIMBERGER M, LIANG W, SCHMIDT M, et al. Regional Representation of F2 Chapman Parameters Based on Electron Density Profiles[J]. Annales Geophysicae, 2013, 31(12): 2215–2227. DOI:10.5194/angeo-31-2215-2013
[129] ALIZADEH MM, SCHUH H, SCHMIDT M. Ray Tracing Technique for Global 3D Modeling of Ionospheric Electron Density Using GNSS Measurements[J]. Radio Science, 2015, 5(6): 539–553.
[130] KONG Jian, YAO Yibin, LIU Lei, et al. A New Computerized Ionosphere Tomography Model Using the Mapping Function and an Application to the Study of Seismic-ionosphere Disturbance[J]. Journal of Geodesy, 2016, 90(8): 741–755. DOI:10.1007/s00190-016-0906-9
[131] KAK A C, SLANEY M. Principles of Computerized Tomographic Imaging[M]. [S.l.]: IEEE Press, 1988: 275-296.
[132] PRYSE S E, KERSLEY L. A Preliminary Experimental Test of Ionospheric Tomography[J]. Journal of Atmospheric and Terrestrial Physics, 1992, 54(7-8): 1007–1012. DOI:10.1016/0021-9169(92)90067-U
[133] RIUS A, RUFFINI G, CUCURULL L. Improving the Vertical Resolution of Ionospheric Tomography with GPS Occultations[J]. Geophysical Research Letters, 1997, 24(18): 2291–2294. DOI:10.1029/97GL52283
[134] RUFFINI G, CUCURULL L, FLORES A, et al. A PIM-Aided Kalman Filter for GPS Tomography of the Ionospheric Electron Content[J]. Physics and Chemistry of the Earth, Part C:Solar, Terrestrial & Planetary Science, 2009, 24(4): 365–369.
[135] BUST G S, COKER C, COCO D S, et al. IRI Data Ingestion and Ionospheric Tomography[J]. Advances in Space Research, 2001, 27(1): 157–165. DOI:10.1016/S0273-1177(00)00163-0
[136] BUST G S, GARNER T W, GAUSSIRAN T L Ⅱ. Ionospheric Data Assimilation Three-dimensional (IDA3D):A global, Multisensor, Electron Density Specification Algorithm[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(A11): A11312. DOI:10.1029/2003JA010234
[137] BHUYAN K, SINGH S B, BHUYAN P K. Application of Generalized Singular Value Decomposition to Ionospheric Tomography[J]. Annales Geophysicae, 2004, 22(10): 3437–3444. DOI:10.5194/angeo-22-3437-2004
[138] NESTEROV I A, KUNITSYN V E. GNSS Radio Tomography of the Ionosphere:The Problem with Essentially Incomplete Data[J]. Advances in Space Research, 2011, 47(10): 1789–1803. DOI:10.1016/j.asr.2010.11.034
[139] CHARTIER A T, SMITH N D, MITCHELL C N, et al. The Use Of Ionosondes in GPS Ionospheric Tomography at Low Latitudes[J]. Journal of Geophysical Research:Space Physics, 2012, 117(A10): A10326.
[140] YAO Yibin, KONG Jian, TANG Jun. A New Ionosphere Tomography Algorithm with Two-grid Virtual Observations Constraints and Three-dimensional Velocity Profile[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2373–2383. DOI:10.1109/TGRS.2014.2359762
[141] 霍星亮, 袁运斌, 欧吉坤, 等. 顾及电离层变化的层析反演新算法[J]. 地球物理学报, 2016, 59(7): 2393–2401. HUO Xingliang, YUAN Yunbin, OU Jikun, et al. A New Ionospheric Tomographic Algorithm Taking into Account the Variation of the Ionosphere[J]. Chinese Journal of Geophysics, 2016, 59(7): 2393–2401. DOI:10.6038/cjg20160706
[142] HO C M, MANNUCCI A J, LINDQWISTER U J, et al. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network[J]. Geophysical Research Letters, 2013, 23(22): 3219–3222.
[143] PRYSE S E. Ionospheric Tomography[J]. Surv. Geophys, 2003(24): 1–38.
[144] MANNUCCI A J, TSURUTANI B T, ⅡJIMA B A, et al. Dayside Global Ionospheric Response to the Major Interplanetary Events of October 29-30, 2003"Halloween Storms"[J]. Geophysical Research Letters, 2005, 32(12):L12S02.
[145] WEN Debo, YUAN Yunbin, OU Jikun, et al. Ionospheric Temporal and Spatial Variations During the 18 August 2003 Storm over China[J]. Earth, Planets and Space, 2007, 59(4): 313–317. DOI:10.1186/BF03353110
[146] YIZENGAW E, MOLDWIN M B. The Altitude Extension of the Mid-Latitude Trough and Its Correlation with Plasmapause Position[J]. Geophysical Research Letters, 2005, 320(9): L09105.
[147] YIZENGAW E, ZESTA E, MOLDWIN M B, et al. Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics[J]. Journalof Geophysical Research:Space Physics, 2012, 117(A7): A7312.
[148] DAVIES K, BAKER D M. Ionospheric Effects Observed Around the Time of the Alaskan Earthquake of March 28, 1964[J]. Journal of Geophysical Research, 1965, 70(9): 2251–2253. DOI:10.1029/JZ070i009p02251
[149] LEONARD R S, BARNES R A. Observation of Ionospheric Disturbances Following the Alaska Earthquake[J]. Journal of Geophysical Research, 1965, 70(5): 1250–1253. DOI:10.1029/JZ070i005p01250
[150] DAUTERMANN T, CALAIS E, HAASE J, et al. Investigation of Ionospheric Electron Content Variations Before Earthquakes in Southern California, 2003-2004[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B2): B02106.
[151] LIU J Y, CHEN Y I, CHUO Y J, et al. A Statistical Investigation of Preearthquake Ionospheric Anomaly[J]. Journal of Geophysical Research:Space Physics, 2006, 111(A5): A05304.
[152] KON S, NISHIHASHI M, HATTORI K. Ionospheric Anomalies Possibly Associated with M ≥ 6 Earthquakes in the Japan Area during 1998-2010:Case Studies and Statistical Study[J]. Journal of Asian Earth Sciences, 2011, 41(4-5): 410–420. DOI:10.1016/j.jseaes.2010.10.005
[153] SAROSO S, LIU J Y, HATTORI K, et al. Ionospheric GPS TEC Anomalies and M>=5.9 Earthquakes in Indonesia during 1993-2002[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(5): 481–488. DOI:10.3319/TAO.2008.19.5.481(T)
[154] YAO Y B, CHEN P, ZHANG S, et al. Analysis of Pre-Earthquake Ionospheric Anomalies before the GlobalM=7.0+Earthquakes in 2010[J]. Natural Hazards and Earth System Sciences, 2012, 12(3): 575–585. DOI:10.5194/nhess-12-575-2012
[155] LIU J Y, TSAI H F, LIN C H, et al. Coseismic Ionospheric Disturbances Triggered by the Chi-Chi Earthquake[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A8): A08303.
[156] JIN Shuanggen, OCCHIPINTI G, JIN Rui. GNSS Ionospheric Seismology: Recent Observation Evidences and Characteristics[J]. Earth-Science Reviews, 2015(147): 54-64. http://www.sciencedirect.com/science/article/pii/S001282521500080X
http://dx.doi.org/10.11947/j.AGCS.2017.20170333
中国科学技术协会主管、中国测绘地理信息学会主办。
0

文章信息

姚宜斌,张顺,孔建
YAO Yibin, ZHANG Shun, KONG Jian
GNSS空间环境学研究进展和展望
Research Progress and Prospect of GNSS Space Environment Science
测绘学报,2017,46(10):1408-1420
Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1408-1420
http://dx.doi.org/10.11947/j.AGCS.2017.20170333

文章历史

收稿日期:2017-06-22
修回日期:2017-09-04

相关文章

工作空间