﻿ ﻿ 基于有理多项式模型的星载InSAR影像制作数字高程模型的研究
 文章快速检索 高级检索

1．武汉大学 测绘遥感信息工程国家重点实验室，湖北 武汉 430079; 2．国家测绘地理信息局 卫星测绘应用中心，北京 100830

Research of DEM Generation by Spaceborne InSAR Images Based RFM Model
FEI Wenbo1ZHANG Guo1,2,TANG Xinming2 LI Deren1GAO Xiaoming2
1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China; 2.Satellite Surveying and Mapping Application Center, National Administration of Surveying,Mapping and Geoinformation, Beijing 100830,China
First author: FEI Wenbo(1984—), male, PhD, majors in spaceborne InSAR technique.E-mail： feiwenbo@whu.edu.cn
Corresponding author： ZHANG Guo. E-mail： guozhang@whu.edu.cn.
Abstract: Synthetic aperture radar interferometry (InSAR) is a new technique by phase data of SAR complex images for extracting the terrain elevation information, which can solve geographic coordinates of ground points by phase difference of two SAR images. RFM model is a mathematical sense of the imaging geometry model, which is independent of the sensor and platform. This model can establish the relationship between the ground coordinates of the image and the corresponding geographic coordinates. At present, some work has been studied about RFM model as a replacement for range-doppler model and phase equation, based on that, this paper states how RFM model is applied for DEM generation by InSAR technique, and then RFM model can be used in four steps, coarse registration, subtract flatten phase, phase height conversion and geocoding. Based on the contrast experiment between COSMO-SkyMed SAR images and ZY-3 optical images for Lanzhou area,mean square error of DEM generated by the RFM model applied for InSAR technology is 7.55meters.
Key words: rational function model     InSAR     DEM

1 引 言

2 RFM模型用于星载InSAR制作DEM

2.1 RFM模型在星载InSAR影像配准中的应用

InSAR影像配准中一般包括3个步骤：基于轨道信息的配准、基于相关系数的粗配准和基于相关系数的图像精配准[3]，RFM模型能够用于轨道粗配准的处理中。

 图 1 RFM模型在InSAR制作DEM中的应用 Fig. 1 Application of RFM model for DEM generation by InSAR

 图 2 轨道粗配准示意图 Fig. 2 Process of orbit coarse registration

2.2 RFM模型在去平地效应中的应用

2.3 RFM模型在星载InSAR相位高程转换中的应用

3 试 验

3.1 数据描述

COSMO-SkyMed数据拍摄地点是甘肃省兰州市，地形条件为丘陵，成像模式为条带模式，成像时间分别是2011-04-21和2011-04-22，主影像的有效影像高度为22 558行，每行有19 940像素，影像中心经纬度为103.936°E和36.167°N,辅影像的有效影像高度为22 558行，每行有19 940像素，影像中心经纬度为103.937°E和36.176°N，雷达波长为0.032 m，两景影像组成的干涉数据基线约为146 m。数据的具体信息如表 1所示。COSMO-SkyMed干涉数据影像的幅度图如图 3图 4所示。

 数据 地点 拍摄日期 影像大小/像素 波长/m 中心经纬度 COSMO-SkyMed 兰州 2011-4-21 19 940×22 558 0.031 2(X) 103.94°E36.17°N COSMO-SkyMed 兰州 2011-4-22 19 940×22 558 0.031 2 (X) 103.94°E36.17°N

 图 3 主影像的幅度图 Fig. 3 Intensity image of master

 图 4 辅影像的幅度图 Fig. 4 Intensity image of slave

3.2 试验结果

 图 5 参考DEM快视图 Fig. 5 Quick view image by referring to DEM

 数据 行 列 平面 中误差 0.045 0 0.051 0 0.068 0 最大误差 0.282 0 0.268 0

 图 6 InSAR制作DEM各步骤试验结果 Fig. 6 Test results of InSAR for DEM generation
3.3 试验结果分析

 图 7 与参考DEM差值后的结果图 Fig. 7 Result of DEM difference

 数据 最大误差 中误差 DEM差值结果 -20.66 7.55

5 结 论

 [1] TOUTIN T, GRAY L. State-of-the-Art of Elevation Extraction from Satellite SAR Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2000, 55(1): 13-33. [2] ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic Aperture Radar Interferometry[J]. Poceedings of the IEEE, 2000, 88(3): 359-361. [3] RICHARD B, PHILIPP H. Synthetic Aperture Radar Interferometry[J]. Inverse Problems, 1998,14(4): 1-54. [4] GENS R, GENDEREN J L V. Review Article: SAR Interferometry-Issues, Techniques, and Applications[J]. International Journal of Remote Sensing, 1996, 17(10): 1803-1835. [5] SHI Shiping. DEM Generation Using ERS-1/2 Interferometric SAR Data[J]. Acta Geodaetica et Cartographica Sinica,2000, 29(4): 317-323. (史世平. 使用ERS-1/2干涉测量SAR数据生成DEM[J]. 测绘学报,2000, 29(4) : 317-323.) . [6] LIU Guoxiang, DING Xiaoli, LI Zhilin, et al. Experimental Investigation on DEM Generation through InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(4): 336-342. (刘国祥, 丁晓丽,李志林,等.使用InSAR 建立DEM 的试验研究[J]. 测绘学报, 2001, 30(4): 336-342.) . [7] ROSENQVIST A, SHIMADA M, ITO N, et al. ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3307-3316. [8] WERNINGHAUS R. TerraSAR-X Mission[C]//Proceedings of Remote Sensing International Society for Optics and Photonics. Bellingham :SPIE,2004: 9-16. [9] Agenzia Spaziale Italiana. COSMO-SkyMed System Description and User Guide[EB/OL].[2007-01-20]. www.cosmo-skymed.it. [10] MORENA L C, JAMES K V, BECK J. An Introduction to the RADARSAT-2 Mission[J]. Canadian Journal of Remote Sensing, 2004,30(3): 221-234. [11] HAJNSEK I, MOREIRA A. TanDEM-X: Mission and Science Exploration[C]//Proceedings of EUSAR.Dresden:[s.n.],2006. [12] MOREIRA A, KRIEGER G, HAJNSEK I, et al. TanDEM-X: A TerraSAR-X Add-on Satellite for Single-pass SAR Interferometry[C]//Proceedings of Geoscience and Remote Sensing Symposium.[S.l.]:IEEE,2004: 1000-1003. [13] FRASER C S,HUNLEY H B. Bias Compensation in Rational Functions for IKONOS Satellite Imagery[J]. Photogrammetric Engineering and Remote Sensing,2003,69 (1): 53-57. [14] GRODECKI J, DIAL G. Block Adjustment of High Resolution Satellite Images Described by Rational Functions[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69(1): 59-68. [15] FRASER C S, RAVANBAKHSH M. Georeferencing Accuracy of GeoEye-1 Imagery[J]. Photogrammetric Engineering and Remote Sensing,2009, 75 (6): 634-638. [16] TAO C V, HU Yong. A Comprehensive Study of the Rational Function Model for Photogrammetric Processing[J]. Photogrammetric Engineering and Remote Sensing,2001, 67(12): 1347-1357. [17] TAO C V, HU Yong. 3D Reconstruction Methods Based on the Rational Function Model[J]. Photogrammetric Engineering and Remote Sensing,2002, 68(7):705-714. [18] ZHANG Guo, FEI Wenbo, LI Zhen, et al. Evaluation of the RPC Model for Spaceborne SAR Imagery[J]. Photogrammetric Engineering and Remote Sensing, 2010,76(6):727-733. [19] ZHANG Guo, FEI Wenbo, LI Zhen, et al. Analysis and Test of the Substitutability of the RPC Model for the Rigorous Sensor Model of Spaceborne SAR Imagery[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(3): 264-270.(张过, 费文波, 李贞,等.用RPC替代星载SAR严密成像几何模型的试验与分析[J]. 测绘学报,2010, 39(3): 264-270.) . [20] ZHANG Guo, FEI Wenbo, LI Zhen, et al. Evaluation of the RPC Model as a Replacement for the Spaceborne InSAR Phase Equation[J]. Photogrammetric Record,2011, 135(26): 325-338. [21] ZHANG Guo, QIANG Qiang, LUO Ying, et al. Application of RPC Model in Ortho-rectification of Spaceborne SAR Imagery[J]. Photogrammetric Record,2012, 137(27): 94-110. [22] ZHANG Guo, LI Zhen, PAN Hongbo, et al. Orientation of Spaceborne SAR Stereo Pairs Employing the RPC Adjustment Model[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(7): 2782-2792. [23] SMALL D, PASQUALI P, FUGLISTALER S. A Comparison of Phase to Height Conversion Methods for SAR Interferometry[C]// Proceedings of Geoscience and Remote Sensing Symposium.[S.l.]:IEEE,1996: 342-344. [24] TANG Xinming, ZHANG Guo, ZHU Xiaoyong, et al. Triple Linear-array Imaging Geometry Model of Ziyuan-3 Surveying Satellite and Its Validation[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2): 191-198. ( 唐新明,张过,祝小勇,等. 资源三号测绘卫星三线阵成像几何模型构建与精度初步验证[J]. 测绘学报,2012, 41(2) : 191-198.). [25] LI Deren. China's First Civilian Three-line-array Stereo Mapping Satellite: ZY-3[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 317-22. ( 李德仁. 我国第一颗民用三线阵立体测图卫星—资源三号卫星[J]. 测绘学报,2012, 41(3) : 317-322.) . [26] LIU Bin, SUN Xiliang, DI Kaichang, et al. Accuracy Analysis and Validation of ZY-3's Sensor Corrected Products[J]. Remote Sensing for Land & Resources, 2012, 24(4): 36-40.( 刘斌,孙喜亮,邸凯昌,等. 资源三号卫星传感器校正产品定位精度验证与分析[J]. 国土资源遥感, 2012, 24(4): 36-40.) . [27] LU Lijun, ZHANG Jixian, WANG Teng. A DEM Mapping Method Assisted by External DEM with High Resolution InSAR Data in Complex Terrain Area[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4): 459-463. ( 卢丽君,张继贤,王腾. 一种基于高分辨率雷达影像以及外部DEM辅助的复杂地形制图方法[J]. 测绘学报,2011, 40(4): 459-463.) .
http://dx.doi.org/10.13485/j.cnki.11-2089.2014.
0012

0

文章信息

FEI Wenbo，ZHANG Guo，TANG Xinming,et al.

Acta Geodaeticaet Cartographica Sinica,2014,43(1):83-88.
http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0012