文章快速检索 高级检索

1. 中国人民公安大学 警务信息工程学院，北京 100038；
2. 国家基础地理信息中心，北京 100830；
3. 昆明理工大学 国土资源工程学院，云南 昆明 650093

Increments Recognition and Calculation Considering the Inconsistency of Spatio-temporal Boundaries
LIN Yan1, CHEN Jun2 , ZHAO Renliang2, LI Jiatian3, LIU Wanzeng2
1. Policing Information Technology College, Peoples Public Security University of China, Beijing 100038, China;
2. National Geomatics Center of China, Beijing 100830, China;
3. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
First author: LIN Yan (1982—), female, PhD, lecturer, majors in spatio-temporal modeling, policing geographic information technology. E-mail： linyan20@163.com
Abstract: The current methods cannot distinct the spurious increments appeared as slivers caused by spatio-temporal boundaries, and the true increments caused by the slivers entities. Aiming to solve this problem, a new method of increments recognition and calculation is proposed. Firstly, distance between spatio-temporal boundaries is used to quantified the inconsistency of spatio-temporal boundaries, and then the distance is compared with the updating threshold to distinguish the spurious increments and the true increments. Finally, the method is applied to the incements recognition of spatial database at the scale of 1∶50 000. The experimental result shows the proposed is valid.
Key words: increments recognition     spurious increments     spatio-temporal boundaries     inconsistency
1 引 言

 图 1 基于形状度量法识别伪增量 Fig. 1 Identify spurious increments using shape metrics

2 时空边界不一致性及其对增量识别的影响

 图 2 时空目标的边界不一致性及对增量识别的影响 Fig. 2 Inconsistency of spatio-temporal boundaries and its influences on increments recognition

3 增量识别计算

3.1 时空边界不一致性的距离度量

 图 3 差图元的时空边界 Fig. 3 Temporal-spatio boundaries of difference element

 图 4 节点-边界距离 Fig. 4 Distance of point-boundary

l(t1)i的某一节点坐标p(x0,y0)，l(t2)i中与p对应着节点-边界距离的线段记为l(t2)minl(t2)min两端点坐标分别为(x1,y1)、(x2,y2)，根据解析几何原理，得到节点p与边界l(t2)i的节点-边界距离为

η=[a1 b1 a2 b2 a3 b3]，由方差-协方差传播律，可计算pl(t2)i的节点-边界距离协方差阵

3.2 基于更新临界值的真伪增量判断

3.3 算 例

 图 5 1号差图元 Fig. 5 Difference element number 1

 boundary Pt.No. x/m y/m σx/m σy/m σxy/m2
l(t1)
 101 337 382.343 3 427 281.999 25 25 0 102 337 399.343 3 427 302.999 25 25 0 103 337 434.305 3 427 326.402 25 25 0 104 337 459.648 3 427 330.512 25 25 0 105 337 500.059 3 427 330.512 25 25 0 106 337 566.498 3 427 338.046 25 25 0 107 337 635.677 3 427 320.923 25 25 0 108 337 676.773 3 427 316.128 25 25 0 109 337 714.015 3 427 304.922 25 25 0 110 337 728.889 3 427 299.672 25 25 0 111 337 740.346 3 427 287.000 25 25 0 112 337 773.347 3 427 275.000 25 25 0 113 337 800.724 3 427 272.262 25 25 0 114 337 826.485 3 427 270.000 25 25 0 115 337 825.527 3 427 247.954 25 25 0
l(t2)
 201 337 382.343 3 427 281.999 25 25 0 202 337 445.245 3 427 254.850 25 25 0 203 337 552.929 3 427 237.800 25 25 0 204 337 736.888 3 427 236.903 25 25 0 205 337 825.527 3 427 247.954 25 25 0

 Pt0.No. Pt1.No. Pt2.No. D/m σD/m Dmin Dmax
 101 201 201 0 0 0 0 102 201 202 26.02 33.63 0 59.65 103 201 202 61.36 30.69 30.67 92.05 104 202 203 76.98 34.97 42.01 111.96 105 202 203 83.3 30.87 52.43 114.18 106 203 204 100.31 34.17 66.14 134.48 107 203 204 83.53 30.67 52.85 114.2 108 203 204 78.93 31.21 47.72 110.14 109 203 204 67.91 33.35 34.56 101.26 110 203 204 62.73 34.58 28.14 97.31 111 204 205 49.28 33.61 15.67 82.9 112 204 205 33.29 30.65 2.64 63.95 113 204 205 27.19 31.95 0 59.14 114 204 205 21.76 36.11 0 57.86 115 205 205 0 25 0 25 201 101 101 0 0 0 0 202 102 103 65.55 31.68 33.87 97.23 203 105 106 98.08 30.96 67.12 129.04 204 111 112 48.26 30.84 17.42 79.11 205 115 115 0 0 0 0

4 试验与分析 4.1 试验数据及步骤

 图 6 更新前后的常年河 Fig. 6 Rivers before and after updating

4.2 结果比较与分析

 图 7 3种增量识别方法的结果 Fig. 7 Changes recognition results with three different methods

 增量图元 伪增量图元 待定图元 过度过滤图元 正确率
 个数 面积/km2
 个数 面积/km2
 个数 面积/km2
 个数 面积/km2
 (个数)
 本文方法 143 3.06 0 0 6 0.02 0 0 95.80% 直接求差法 764 4.24 627 1.18 0 0 0 0 17.93% 形状度量法 151 3.8 57 0.87 0 0 43 0.13 68.61%

5 结 论

 [1] CHEN Jun, LIN Yan, LIU Wanzeng, et al. Formal Classification of Spatial Incremental Changes for Updating[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1): 108-114. (陈军, 林艳, 刘万增, 等. 面向更新的空间目标快照差分类与形式化描述[J]. 测绘学报, 2012, 41(1): 108-114.) [2] XU Lihua, JIANG Wanshou. Change Detection of Satellite Imagery Considering Projection Difference[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 687-690. (徐丽华, 江万寿. 顾及配准误差的遥感影像变化检测[J]. 武汉大学学报: 信息科学版, 2006, 31(8): 687-690.) [3] ZHANG Yun, LI Qingquan, CAO Xiaohang, et al. An Algorithm for Detecting the Geometric Difference between the Road Networks[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4): 521-525. (张韵, 李清泉, 曹晓航, 等. 一种道路网信息几何差异检测算法[J]. 测绘学报, 2008, 37(4): 521-525.) [4] LIU Wanzeng. Automatic Detection of Spatial Conflict in GIS Database Updating[M]. Beijing: Surveying and Mapping Press, 2009. (刘万增. GIS数据库更新中的空间冲突自动检测方法[M]. 北京: 测绘出版社, 2009.) [5] ZHANG Xinchang, GUO Taisheng, TANG Tie. An Adaptive Method for Incremental Updating of Vector Data[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 613-619. (张新长, 郭泰圣, 唐铁. 一种自适应的矢量数据增量更新方法研究[J]. 测绘学报, 2012, 41(4): 613-619.) [6] TANG Luliang, YANG Bisheng, XU Kaiming. The Road Data Change Detection Based on Linear Shape Similarity[J]. Geomatics and Information Science of Wuhan University, 2008, 33(4): 367-370. (唐炉亮, 杨必胜, 徐开明. 基于线状图形相似性的道路数据变化检测[J]. 武汉大学学报: 信息科学版, 2008, 33(4): 367-370.) [7] NCGIA Core Curriculum in GIScience. The Polygon Overlay Operation[EB/OL]. [2012-06-22]. http://www.ncgia.ucsb.edu/giscc/units/u186/u186.html. [8] DENG Min, LIU Wenbao, FENG Xuezhi. Dealing with Inconsistency between Digital Geographic Lines from Multi-data Sources in GIS[J]. Journal of Remote Sensing, 2005, 9(4): 343-347. (邓敏, 刘文宝, 冯学智. GIS中地理边线不一致性的处理[J]. 遥感学报, 2005, 9(4): 343-347.) [9] BURROUGH P A, MCDONNELL R A. Principles of Geographical Information Systems[M]. Oxford: Oxford University Press, 1998. [10] ZHANG Jiangqing, ZHU Lina, PAN Li. River Change Detection Based on Remote Sensing Imagery and Vector Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(8): 663-666. (张剑清, 朱丽娜, 潘励. 基于遥感影像和矢量数据的水系变化检测[J]. 武汉大学学报: 信息科学版, 2007, 32(8): 663-666.) [11] University Consortium for Geographic Information Science. Research Priorities for Geography Information Science[J]. Cartographic and Geographic Information System, 1996, 23(3): 115-127. [12] FRAKLIN W R, WU P Y F. A Polygon Overlay System in Prolog[C]//Proceedings of AutoCarto 8. Falls Church: ASPRS/ACSM, 1987: 97-106. [13] SHI Wenzhong. Principle of Modelling Uncertainties in Spatial Data and Analysis[M]. Beijing: Science Press, 2005: 283. (史文中. 空间数据与空间分析不确定性原理[M]. 北京: 科学出版社, 2005: 283.) [14] LIN Yan, CHEN Jun, LIU Wanzeng, et al. Topological Quantitatively Method for Spurious Increments Removed of Area Water[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1504-1505. (林艳, 陈军, 刘万增, 等. 面状水系伪增量剔除的拓扑量化法[J]. 武汉大学学报: 信息科学版, 2012, 37(12): 1504-1505.) [15] DAI Honglei, XU Panlin, DU Daosheng. The Analyses of the Positional Error Propagation in Overlay Operation of Polygon Under GIS Environment[J]. Acta Geodaetica et Cartographica Sinica, 1999, 28(2): 148-152. (戴洪磊, 徐泮林, 杜道生. 矢量GIS环境下多边形叠置中位置误差的传播分析[J]. 测绘学报, 1999, 28(2): 148-152.) [16] AI Tinghua, WU Hehai. Consistency Correction of Shared Boundary between Adjacent Polygons[J]. Geomatics and Information Science of Wuhan University, 2000, 25(5): 426-431. (艾廷华, 毋河海. 相邻多边形共享边界的一致化改正[J]. 武汉大学学报: 信息科学版, 2000, 25(5): 426-431.) [17] CASADO M L. Some Basic Mathematical Constraints for the Geometric Conflation Problem[C]//Proceedings of the 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Lisboa: Instituto Geográfico Português, 2006: 266-274.
http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0061

0

#### 文章信息

LIN Yan, CHEN Jun, ZHAO Renliang, et al.

Increments Recognition and Calculation Considering the Inconsistency of Spatio-temporal Boundaries

Acta Geodaeticaet Cartographica Sinica, 2014, 43(4): 411-418.
http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0061