文章快速检索  
  高级检索
倾斜航空摄影技术设计与成果质量检验
毕凯1, 赵俊霞1, 丁晓波2, 刘飞2,3     
1. 国家基础地理信息中心,北京 100830;
2. 中测新图 (北京) 遥感技术有限责任公司,北京 100039;
3. 中国矿业大学,江苏 徐州 221116
摘要:在分析倾斜航摄相机有关问题的基础上,结合现有框幅式数字航空摄影规范和航摄成果质量检验规程,详细阐述了倾斜航空摄影技术设计内容,首次总结了倾斜航空影像飞行质量与数据质量的重点检查内容与指标,探讨了倾斜航摄影像的数据整理方法,为开展倾斜航空摄影项目设计、验收与资料归档管理提供了参考。
关键词倾斜航空摄影     倾斜角度     倾斜影像分辨率     质量检查     数据编号    
Technical Design and Product Quality Inspection of Oblique Aerial Photography
BI Kai1, ZHAO Junxia1, DING Xiaobo2, LIU Fei2,3     
1. National Geomatics Center of China, Beijing 100830, China;
2. China TopRS Technology Co. Ltd., Beijing 100039, China;
3. China University of Mining and Technology, Xuzhou 221116, China
Abstract: Based on the analysis of the problems of the oblique aerial camera, combined with the existing frame digital aerial photography specification and the technical regulations for quality inspection and acceptance of aerial photography results, this paper analyzes and elaborates of the oblique aerial photography technology design content in detail, summarizes the key items of the flight quality and data quality of oblique aerial image for the first time, discusses the data processing method of oblique aerial photographic image, provides reference for the design, acceptance and data archive management of inclined oblique aerial photography project.
Key words: oblique aerial photography     oblique angle     oblique image resolution     quality inspection     data number    

传统航空摄影均是垂直摄影,在拍摄瞬间相机主光轴垂直于目标物顶部,以方便获取地面目标物顶部的影像信息,航摄成果多以制作正射影像图为主要用途。但是因其不具备获取建筑物侧面纹理的能力,因此无法满足实景三维影像图的生产需要。与传统垂直摄影的影像相比,倾斜影像相机主光轴与铅垂线呈一定夹角,一次航空摄影既能获取目标物顶部的信息,也能获取建筑物侧面的纹理信息,是制作高精度、高逼真、可量测三维实景影像的主要技术手段,具有广泛的应用前景[1-3]。近年来,倾斜航空摄影技术已经在国家基础航空摄影项目中成功应用,有关企业利用多款倾斜航空摄影装备获取了多个城市地区的倾斜航空影像。

现阶段,由于缺乏倾斜航空摄影及成果质量检验的相关标准,倾斜航空摄影技术设计、质量检验主要参考框幅式航空摄影的相关规范,不仅无法体现倾斜航空摄影的技术特点,而且有些重要的技术指标两者有着很大区别,不能替代。因此,如何开展倾斜航空摄影技术设计,如何检查倾斜航空摄影影像质量,如何进行倾斜影像的资料整理,成为当前急需解决的问题。

本文针对倾斜航空摄影的技术特点,以5镜头倾斜航空摄影为例,深入分析倾斜航空摄影数码相机的有关问题,阐述倾斜航空摄影技术设计,重点分析倾斜航空影像质量检查的内容与指标要求,并提出倾斜航空影像资料整理的建议。

1 倾斜航空摄影数码相机的有关问题 1.1 数码相机相对位置

倾斜航摄仪集成一个下视相机和多个倾斜相机,中央一个垂直对地观测,获取垂直影像,于该相机4个正交方位分别以一定的倾角放置一个相机。

由于倾斜航摄仪拍摄模式的特殊性,相机间的相对关系对于地物覆盖范围、倾斜影像分辨率变化范围、相邻曝光点影像重叠度、集成系统空间尺寸乃至后续数据处理算法都会产生影响,因此确定相机间排布模式是首要解决的问题之一。针对多种排布可能,通过对地物覆盖范围、倾斜影像分辨率等因素进行计算与仿真,确定较优的排布模式为下视影像长边跨航线、前视、后视影像长边跨航线、左视、右视影像短边跨航线。5相机观测视野如图 1所示。

图 1 倾斜航空相机相对位置

相机倾角指倾斜放置相机主光轴与垂直放置相机主光轴在它们所确定的平面内所形成的夹角。根据经验及模拟测试,当倾角在40°~50°之间时,所获得的影像更接近人眼对立面纹理信息的真实视觉体验,此范围角度一般为摄影测量大倾角范围。

1.2 相机安装倾角、视场角与分辨率的关系

垂直和倾斜影像的地面分辨率是倾斜航摄仪最为直观与重要的参数之一,也是直接决定后续三维建模质量的关键因素。倾斜影像自动空三时,为了保证量测点的精度,应尽量保证不同影像的分辨率一致,从而侧视影像需要裁掉远端和近端分辨率差异过大的部分,但同时为了保证影像的重叠度,航线设计时需要顾及侧视影像的分辨率[4]。因此需对垂直与倾斜视角的影像分辨率进行组合分析。

根据垂直影像GSD计算公式

结合倾斜相机主光轴旋转角度,由图 2可以得出倾斜影像中心点、近地点与远地点的大致分辨率。设倾斜影像中心点、近点和远点分辨率分别为GSDmid、GSDtop、GSDbotton,计算公式如下

图 2 倾斜影像的几何关系

式中,δ为CCD单像元大小;h为飞行高度;f为相机焦距;αy为倾角;βy=arctan (b/f) 为视场角的一半。倾斜影像的几何关系如图 2所示。

以SWDC-5相机为例,当倾角为45°,视场角为40°,βy=20°,f下视=50 mm,f侧视=80 mm时,按照下视相机进行设计,当GSD=0.08 m时,H=666 m。

则侧视相机的分辨率概算为

由此可见,除飞行高度、焦距、像素大小之外,倾角也是影响倾斜影像GSD的一个重要因素。倾角越小,其远点的分辨率越高,近点、远点GSD差异也就越小,GSD指标的控制也是影响倾角设计的一个关键因素。通常,获取的倾斜影像与垂直影像中心点地面分辨率应相当,倾斜影像的最小分辨率不宜超过垂直影像分辨率的3倍。

1.3 倾斜航摄相机的选择

相机选择是影像获取的关键因素之一,决定了所获取影像质量的好坏 (如影像分辨率、成像的几何精度等) 和摄影交会角的大小 (与相机视场角和摄影方式有关),将直接影响最终的量测精度。

如何搭配下视相机与倾斜相机的焦距,是影像获取的另一个关键因素。目前,通常可选用的相机焦距在50~120 mm之间。焦距较长的相机,视场角小,可以获取更多的影像纹理;焦距较短的相机,视场角大,影像变形也越厉害。选择组合相机焦距时,需要整体考虑下视相机焦距和侧视相机焦距的组合选择。

一般情况下,选择下视相机的GSD应与侧视相机的GSDmid相当

式中,α为倾角。当倾角设置为45°时,一般情况下侧视相机的焦距宜为下视相机焦距的1.4倍。因此,倾斜摄影时一般选用侧视相机的焦距比下视相机的焦距要长。

1.4 平台检校

平台检校的过程是解算多视相机相对关系的过程,是获取侧视相机相对于下视相机摄影中心的相对位置关系。由于现有空三软件处理大倾角影像比较困难,实际作业时可预先解算下视相机的外方位元素,通过获知侧视相机与下视相机的相对关系,从而推算侧视相机影像的外方位元素[5-6]

以5镜头倾斜航摄仪为例,利用光束法区域网空中三角测量的原理,从影像所覆盖范围内若干控制点的已知地面坐标和相应点的像点坐标出发,根据共线方程解求4个侧视相机相对于下视相机的位置和姿态参数。

1.5 倾斜影像有效像幅

倾斜影像由于其大倾角特性,导致影像边缘的分辨率较低,地物变形较大,不满足使用要求,因此在实际处理过程中将会对其进行裁减,裁减后可用的像幅称为倾斜影像有效像幅,有效像幅界定标准为影像内GSD达到指标要求的影像范围,并且在满足航线设计要求下所有倾斜影像的有效像幅联合起来能覆盖到整个测区。有效像幅占倾斜影像原始像幅的比例越大则相机参数的设计越合理。

2 倾斜航空摄影技术设计

倾斜航空摄影技术设计在地面分辨率选择、航高计算等方面沿用了框幅式数码相机航空摄影的设计思路和内容[7];在航摄时间选择、航摄分区划分、影像重叠度与航线敷设设计、分区覆盖等方面,倾斜航空摄影与框幅式数码航空摄影存在差异。

2.1 航摄时间选择设计

倾斜航空摄影的对象通常是高层建筑密集的城市地区和高差较大的陡峭山区,因此航空摄影时需要特别注意太阳高度角及出现阴影,阴影太大会直接影响影像处理的效果。太阳高度角推算摄区的摄影时间参考公式为

式中,tθ为太阳时角,单位为 (°);hθ为太阳高度角,单位为 (°);δθ为摄影日期的太阳赤纬,单位为 (°);φ为摄区的平均地理纬度,单位为 (°);Tφ为摄区地方时,单位为时。

为便于后期影像判读与处理,建议高差特大的陡峭山区或高层建筑物密集的大城市要求在正午前后1 h内进行航空摄影,阴影倍数不大于1倍。

2.2 地面分辨率与航摄分区设计

倾斜航空摄影为了体现真实纹理的三维实景影像,多选择建城区或有较大高差的区域作为摄区,具有航摄面积小、影像分辨率高的突出特点。一般情况下优于0.2 m,最高甚至可达0.03 m。在地面分辨率选择、航高选择与划分航摄分区时,应当重点注意以下几点:

(1) 利用下视影像进行标准测绘产品生产时,地面分辨率选择需要严格遵循框幅式数字航空摄影规范的要求,1:500比例尺不超过8 cm,1:1000比例尺在8~10 cm之间,1:2000比例尺在15~20 cm之间;航摄时需要顾及地表高差影响,高差 (包含建筑物) 大于1/4相对航高时,建议分区进行航摄。如能确保航线在直线性的情况下,分区的跨度应尽量划大。

(2) 仅生产实景三维影像数据时,可根据三维影像的目视效果合理设置地面分辨率。由于高差影响,摄区内最高点和最低点的分辨率、重叠度有较大变化。根据经验,在满足最高点重叠度的前提下,最高点、最低点与基准面分辨率不超过1.5倍为宜。如果超过1.5倍,建议分区进行航摄。

2.3 影像重叠度与航线敷设设计

在建筑物密集的城市地区倾斜摄影获取的影像存在严重的地物遮挡现象,为了获取全方位无信息盲点的倾斜影像,同时也为了多视影像的整体平差效果,应采取大重叠的影像获取方式。影像重叠度以下视相机为基础,与垂直摄影重叠度设计不同,倾斜航摄下视相机的航向重叠度一般不小于70%,也不宜过大,以80%以内为宜;旁向重叠度建议在50%~80%之间,可与航向重叠度相同。

2.4 分区覆盖设计

根据侧视相机倾斜角度和视场角的关系,航向和旁向覆盖超区分区边界线理论值计算公式为

式中,P为航向或旁向重叠度;θ为倾角;β为视场角。

在实际飞行中,由于大气等各因素的影响,航向或旁向覆盖超出边界线的实际值一般按照基线数=理论值+2、航线数=理论值+1进行计算。

当倾斜角为45°,视场角为40°、52°,航向和旁向重叠度均设计为70%时,超区分区边界线的理论值计算为5和4,即航摄时航带内超出7条基线,摄区范围外侧需要超出5条航线。

2.5 检校场航摄设计

在IMU/DGPS辅助航空摄影测量时,需要借助飞行检校场的方法实现惯性坐标系下的直接测量数据 (位置数据XYZ和姿态数据pitch、roll、yaw) 到摄影测量坐标系下的精确外方位元素位置数据 (X′,Y′,Z′) 和姿态数据 (φωκ) 的转换,以获得高精度的像片外方位元素,从而实现无或极少地面控制的航片定向和测图[8-9]

检校场区域选择应考虑以下因素:一是地势尽量平坦;二是尽量避开水域范围;三是尽量避免大面积植被覆盖;四是尽量避免有特大密集型建筑群。

以RCD30倾斜数码航摄仪为例,航线敷设时,可采取井字形飞行方案。每条航线均十字交叉来回飞行1次,共计8条航线。设计航高可与分区作业高度相同,可设置航向和旁向重叠80%以上。倾斜航空摄影平台检校飞行示意图如图 3所示。

图 3 倾斜航空摄影平台检校飞行示意图

此外,采用其他倾斜航摄仪执行时,若摄区航向和旁向重叠均不小于80%,可挑选2~3条正常航线的航片作为检校场飞行航线。

3 倾斜航空影像成果质量检查要求 3.1 影像重叠度检查

由于倾斜航空影像采取多视匹配的算法进行空三加密处理,要求影像重叠度大才能匹配更多的同名点。一般情况下,倾斜摄影时下视相机的影像设计航向重叠度应不小于70%,但航向重叠度也不宜过大,如果重叠过大,一方面会造成摄影基线变得更短,不仅影响测图精度也会降低效率,另一方面基线变短会增加影像旋偏角超限的可能,一般在70%~80%之间为宜;下视影像旁向重叠度一般应设计为50%~80%,最低不低于30%;侧视影像航向重叠度不低于53%。

3.2 影像倾斜角检查

依据机载POS数据检查下视相机的倾斜角度。由于下视相机是垂直摄影,影像倾斜角按照现有大比例尺航空摄影规范执行,即一般不大于2°,若下视影像需进行测图处理时最大不应超过4°[10]

3.3 影像旋偏角检查

倾斜航空影像由于重叠度大,基线短,飞机姿态稍有变化即可能导致旋偏角超限。按照成图要求,下视相机的像片旋偏角一般不大于25°。根据作业经验,在只建模不测图的情况下,旋偏角不大于35°或抽片后旋偏角最大不大于25°即可,但需确保像片航向和旁向重叠度满足要求[11-13]

3.4 摄区、分区覆盖保证检查

倾斜摄影为了保证摄区外侧也能获取影像,摄区边界覆盖较垂直摄影大。按照2.4节公式计算分区覆盖超出边界线的基线数和航线数的理论值与实际值。实际航摄过程中,一般可在航线旁向方向测区边界范围外增加4~5条航线,以保证左视和右视镜头影像均覆盖全测区范围;在航线航向方向测区边界范围外,每条航线延长1.5 km以上,以保证前视和后视镜头影像均能覆盖全测区范围。

3.5 航线弯曲度与航高保持检查

摄区航线弯曲度可依照框幅式数字航空摄影规范执行[7],航线弯曲度一般不大于1%,当航线长度小于5000 m时,航线弯曲度最大不大于3%。由于倾斜航空摄影的航高一般小于1000 m,因此在航高保持方面要求同一航线上相邻像片的航高差不大于30 m,最大航高与最小航高之差不大于50 m,分区内实际航高与设计航高之差不大于50 m。

3.6 影像质量检查

影像质量检查与传统垂直摄影的要求一致,除云、云影、烟、雾、反光等检查项外,还需检查影像像点位移,确保在曝光瞬间造成的像点位移不大于1个像素[14]

4 倾斜航空影像的数据整理

倾斜航空影像的数据整理与《数字航空摄影规范第1部分:框幅式数字航空摄影》中7.1中关于文档资料整理的要求有所不同,倾斜摄影有多个相机,因此在相机相对位置关系、像片数据编号、文件存储及激光打印输出等部分存在差异。

4.1 相机相对关系说明

针对多镜头倾斜航空摄影,提交资料时需增加相机相对关系的说明文件。以5镜头为例,表示了倾斜数字航摄仪各子相机的相对位置关系,同时影像上方采用箭头标明与飞行方向的关系。相机相对关系说明如图 4所示。

图 4 相机相对关系说明示意图
4.2 数据命名

下视影像可按照国家基础航空摄影资料整理的规则命名。侧视影像命名时需参照飞行方向,将4镜头分别命名为国家基础航空摄影资料整理12位+1位,最后一位定义相机相对于垂直相机的位置,如沿飞行方向,下视相机前的影像的最后一位编号为F (front),下视相机后、左、右侧的影像的最后一位编号分别为B (back)、L (left) 和R (right)。倾斜影像命名如图 5所示。

图 5 倾斜摄影影像命名示意图

(1) 一般以飞行方向为编号的增长方向。

(2) 同一航线内的影像编号不允许重复。

(3) 由于倾斜摄影面积较小,单条航线长度一般不长,像片数一般不会超过1000张,因此影像编号采用流水号3位数字,当有补飞航线时,补飞航线的影像流水号在原流水号基础上加500。

4.3 文件存储

5镜头获取的影像分为5个文件夹分别存储。每个文件夹命名时,在原有基础上+字母 (L (左)、R (右)、F (前)、B (后))。

4.4 激光打印输出

根据国家航空遥感影像获取成果资料整理的有关要求,为了便于数据检查和满足归档需要,下视影像需要激光打印输出成纸质相片。与传统垂直摄影相比,倾斜摄影由于分辨率高、重叠度大,造成相片数量骤增。如面积为100 km2的摄区,但下视相机的影像数量就可能超过12000张。如此大量的相片给检查、归档造成一定的困难。

由于倾斜航摄时旁向重叠度设计较大,隔航线的重叠度也至少大于20%。因此,在下视相片激光打印输出时可采取隔航线输出的方式,即抽航线进行打印输出,但不建议航线内抽片输出。

5 结论

通过理论分析,结合实际作业经验,可以得出以下结论:

(1) 建议在情况允许时,侧视相机选用焦距较长的相机,减小视场角,以获取更多的影像纹理。

(2) 与垂直摄影相比,倾斜航空摄影影像重叠度可适当放宽要求,如规定重叠度要求在70%~75%之间,但最小不小于53%,能够保证下视影像进行空三即可。

(3) 由于倾斜摄影基线短,飞机姿态不稳定,易造成旋偏角超限,在检查倾斜影像旋偏角时可适当放宽要求。根据有关试验结果,在仅生产实景三维影像不测图时,可放宽至35°或抽片后达到垂直航空摄影质检要求即可。

(4) 经过实际生产建模试验得知,倾斜摄影时,下视影像只要不出现相对漏洞,满足正常空三加密要求,侧视影像只要没有飞行漏洞,能够提取影像纹理,都可以呈现立体景观模型和实地的3D影像图。但如果要求成果精度高,则建议分辨率、重叠度、旋偏角等核心技术指标要保守设计,飞行时需更加严格地执行规范要求。

参考文献
[1] 朱庆, 徐冠宇, 杜志强, 等. 倾斜摄影测量技术综述[EB/OL]. (2011-12-09)[2012-06-07]. http://www.paper.edu.cn.
[2] 黄健, 王继. 多视角影像自动化实景三维建模的生产与应用[J]. 测绘通报, 2016 (4) : 75–78.
[3] 桂德竹, 林宗坚, 张成成. 倾斜航空影像的城市建筑物三维模型构建研究[J]. 测绘科学, 2012, 37 (4) : 140–142.
[4] 王海风, 盛艳容, 马杰, 等. 倾斜航空摄影斜视影像分辨率分析[J]. 测绘与空间地理信息, 2014, 37 (9) : 85–88.
[5] 刘力荣, 左建章, 岳贵杰. SWDC-5倾斜摄影建筑物纹理自动映射方法[J]. 测绘科学, 2015 (40) : 68–71.
[6] 李德仁, 肖雄武, 郭丙轩, 等. 倾斜影像自动空三及其在城市真三维模型重建中的应用[J]. 武汉大学学报 (信息科学版), 2016, 41 (6) : 711–721.
[7] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 数字航空摄影规范第1部分: 框幅式数字航空摄影: GB/T 27920—2011[S]. 北京: 中国标准出版社, 2012.
[8] 李学友, 倪忠礼. IMU/DGPS辅助航空摄影测量中检校场布设方案研究[J]. 测绘工程, 2005, 14 (4) : 14–18.
[9] 吴文坛, 田挚, 李哲, 等. 河北CORS在大比例尺倾斜航空摄影测量中的应用[J]. 测绘通报, 2013 (2) : 63–66.
[10] 国家测绘地理信息局. 航空摄影成果质量检验技术规程第2部分: 框幅式数字航空摄影: CH/T 1029. 2—2013[S]. 北京: 测绘出版社, 2013.
[11] 洪亮, 王海涛, 曹金山, 等. 数字航空摄影成果质量检验方案[J]. 武汉大学学报 (信息科学版), 2013, 38 (10) : 1172–1174.
[12] 陈洁, 杨达昌, 杜磊, 等. 框幅式数字航空摄影飞行质量检查方法[J]. 国土资源遥感, 2014, 26 (4) : 91–96. DOI:10.6046/gtzyyg.2014.04.15
[13] 曾衍伟, 易尧华, 李倩, 等. 框幅式数字航空摄影成果质量检查方法研究[J]. 测绘, 2011, 34 (5) : 195–197.
[14] 赵有松, 尹粟, 张莉, 等. 航空遥感影像质量评价方法探讨[J]. 测绘科学, 2016, 41 (1) : 158–162.
http://dx.doi.org/10.13474/j.cnki.11-2246.2017.0123
国家测绘地理信息局主管、中国地图出版社(测绘出版社)主办。
0

文章信息

毕凯, 赵俊霞, 丁晓波, 刘飞
BI Kai, ZHAO Junxia, DING Xiaobo, LIU Fei
倾斜航空摄影技术设计与成果质量检验
Technical Design and Product Quality Inspection of Oblique Aerial Photography
测绘通报,2017(4):71-76.
Bulletin of Surveying and Mapping, 2017(4): 71-76.
http://dx.doi.org/10.13474/j.cnki.11-2246.2017.0123

文章历史

收稿日期:2016-09-02
修回日期:2017-01-18

相关文章

工作空间