﻿ 光电二极管的地球反照光校正及卫星姿态估计<sup>*</sup>
 文章快速检索 高级检索

The earth's albedo correction of photodiodes and satellite attitude estimation
CHU Lixiang, FAN Qiaoyun
School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China
Received: 2018-08-10; Accepted: 2018-11-08; Published online: 2018-11-21 13:37
Foundation item: National Natural Science Foundation of China (61475012)
Corresponding author. FAN Qiaoyun, E-mail: fqy@buaa.edu.cn
Abstract: As a small and low-cost sun sensor, the photodiode, combined with the earth sensor, can determinate full three-axis satellite attitude. However, the photodiode is sensitive to the surrounding light sources, such as the earth, which limits its application. The mathematical model of the earth's albedo is complicated. To solve this problem, a simplified measurement model of the photodiode, describing the effects of the earth's albedo as the dynamic bias and deviation as the mixed-Gaussian noise, is established first. Then parameters in the model are online estimated and updated with windowing and random weighting strategies. To improve the accuracy of the parameter estimation and robustness of the algorithm, the multi-scale factors are used to estimate the influence of albedo on each photodiode, and the Huber function is introduced to prevent the outliers. The experimental results show that the high-precision satellite attitude estimation can be achieved by the new measurement model and the unscented Kalman filter (UKF) algorithm, and the three-axis attitude accuracy can arrive at 0.2°-0.3°.
Keywords: photodiodes     earth's albedo     mixed-Gaussian noise     multi-scale factors     Huber function

1 地球反照光校正的光电二极管量测模型 1.1 光电二极管工作原理

 图 1 地球反照光几何示意图 Fig. 1 Geometric sketch of the earth's albedo

 (1)
 (2)
 (3)

1.2 地球反照光校正

 (4)

 (5)

 (6)

 (7)

2 模型参数的在线估计和更新方法

 (8)
 (9)

 图 2 滑窗估计和随机权重算法示意图 Fig. 2 Schematic diagram of sliding window estimation and random weighting algorithm

 (10)
 (11)

 (12)
 (13)

 (14)

 (15)
 (16)

3 基于UKF的卫星姿态估计 3.1 姿态估计状态方程

 (17)
 (18)

 (19)

 (20)

 (21)

 (22)

 (23)

 (24)
 (25)
3.2 姿态估计量测方程

 (26)

 (27)

 (28)
3.3 UKF算法实现

 (29)

 (30)
 (31)

4 仿真校验 4.1 仿真条件

 图 3 光电二极管1、2和3的理想电压与量测电压对比 Fig. 3 Comparison of ideal voltage and measured voltage for photodiode 1, 2 and 3
4.2 仿真结果

 (32)

 图 4 卫星三轴姿态估计误差对比 Fig. 4 Comparison of satellite three-axis attitude estimation error

 mV 权重选取策略 光电二极管1 光电二极管2 光电二极管3 固定权重 3.18 3.46 1.53 残差模值 2.97 2.95 1.46 Huber模值 2.90 2.88 1.48 本文方法 2.24 2.79 1.13

 图 5 光电二极管1、2和3的偏置估计误差 Fig. 5 Bias estimation errors of photodiode 1, 2 and 3
5 结论

1) 应用地球反照光校正的光电二极管和地球敏感器组合定姿，可以消弱地球地球反照光的干扰，快速提高三轴姿态精度，精度可以达到0.2°~0.3°。

2) 在应用滑窗估计和随机权重估计量测模型参数过程中，采用多比例因子和Huber影响函数的权重处理方法，可以有效提高地球反照光动态偏置电压的估计精度。

 [1] POST M A, LI J Q, LEE R. A low-cost photodiode sun sensor for CubeSat and planetary microrover[J]. International Journal of Aerospace Engineering, 2013, 2013: 549080. [2] UNHELKAR V V, HABLANI H B. Spacecraft attitude determination with sun sensors, horizon sensors and gyros:Comparison of steady-state Kalman filter and extended Kalman filter[M]. Advances in Estimation, Navigation, and Spacecraft Control.Berlin: Springer, 2015: 413-437. [3] GARCIA R V, KUGA H K, ZANARDI M C F P S. Unscented Kalman filter applied to the spacecraft attitude estimation with euler angles[J]. Mathematical Problems in Engineering, 2012, 2012: 985429. [4] FLATLEY T W, MOORE W A.An earth albedo model: A mathematical model for the radiant energy input to an orbiting spacecraft due to the diffuse reflectance of solar radiation from the Earth below: NASA-TM-104596[R].Washington, D.C., NASA, 1994. [5] APPEL P. Attitude estimation from magnetometer and earth-albedo-corrected coarse sun sensor measurements[J]. Acta Astronautica, 2005, 56(1-2): 115-126. DOI:10.1016/j.actaastro.2004.09.001 [6] 韩柯, 金仲和, 王昊. 基于太阳能电池板的皮卫星最优姿态确定算法[J]. 浙江大学学报(工学版), 2010, 44(9): 1719-1723. HAN K, JIN Z H, WANG H. Optimal attitude determination method forpico-atellite using solar panels[J]. Journal of Zhejiang University(Engineering Science), 2010, 44(9): 1719-1723. DOI:10.3785/j.issn.1008-973X.2010.09.015 (in Chinese) [7] BHANDERI D D V. Spacecraft attitude determination with earth albedo corretted sun sensor measurements[M]. Aalborg: Aalborg University, 2005. [8] HAAVE H R.Simulating sun vector estimation and finding gyroscopes for the NUTS project[D].Trondheim: Norwegian University of Science and Technology, 2016. [9] JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422. DOI:10.1109/JPROC.2003.823141 [10] O'KEEFE S A, SCHAUB H. Consider-filter-based on-orbit coarse sun sensor calibration sensitivity[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(5): 1300-1303. [11] GAO S, HU G, ZHONG Y. Windowing and random weighting-based adaptive unscented Kalman filter[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29(2): 201-223. DOI:10.1002/acs.v29.2 [12] MASRELIEZ C, MARTIN R. Robust Bayesian estimation for the linear model and robustifying the Kalman filter[J]. IEEE transactions on Automatic Control, 1977, 22(3): 361-371. DOI:10.1109/TAC.1977.1101538 [13] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998: 157-176. ZHANG R W. Satellite dynamics and control of spacecraft[M]. Beijing: Beihang University Press, 1998: 157-176. (in Chinese) [14] KIM S G, CRASSIDIS J L, CHENG Y, et al. Kalman filtering for relative spacecraft attitude and position estimation[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1): 133-143. DOI:10.2514/1.22377 [15] FARRENKOPF R L. Analytic steady-state accuracy solutions for two common spacecraft attitude estimators[J]. Journal of Guidance, Control, and Dynamics, 1978, 1(4): 282-284. DOI:10.2514/3.55779 [16] ZANETTI R, DEMARS K J. Fully multiplicative unscented kalman filter for attitude estimation[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(5): 1183-1189. [17] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 2015: 33-57. QIN Q Y, ZHANG H Y, WANG S H. Kalman filtering and integrated navigation principle[M]. Xi'an: Northwestern Polytechnical University Press, 2015: 33-57. (in Chinese) [18] MARKLEY F L, MORTARI D. Quaternion attitude estimation using vector observations[J]. Journal of the Astronautical Sciences, 2000, 48(2): 359-380.

#### 文章信息

CHU Lixiang, FAN Qiaoyun

The earth's albedo correction of photodiodes and satellite attitude estimation

Journal of Beijing University of Aeronautics and Astronsutics, 2019, 45(4): 827-833
http://dx.doi.org/10.13700/j.bh.1001-5965.2018.0470