﻿ 面向气热耦合的涡轮叶片计算域模型建模方法<sup>*</sup>
 文章快速检索 高级检索

1. 北京航空航天大学 机械工程及自动化学院, 北京 100083;
2. 海鹰航空通用装备有限责任公司 无人机总体技术研究室, 北京 100074

A conjugated heat transfer oriented modeling method of turbine blade computational domain model
WANG Tian1, XI Ping1, HU Bifu1, LI Jixing1, SHI Xiaofei2
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China;
2. Department of UAV General Technology, HiWing General Aviation Equipment Co., Ltd., Beijing 100074, China
Received: 2018-04-10; Accepted: 2018-05-18; Published online: 2018-06-19 15:31
Corresponding author. XI Ping, E-mail: xiping@buaa.edu.cn
Abstract: To solve the problems of low modeling efficiency, unstable model quality and poor adaptability to numerical simulation in conjugated heat transfer numerical simulation of turbine blades with complex cooling structure, the turbine blade model for manufacturing and its modeling method were analyzed. Combined with demands for numerical simulation, a conjugated heat transfer modeling method for the turbine blades' computational domain was proposed. Firstly, an automatic positioning algorithm based on the external cooling feature was used to create the turbine blade's cooling air fluid domain. Through the adaptive pipeline intersection algorithm and the boundary automatic matching algorithm, the gas fluid domain that can adapt to different blade section line types was generated. During the modeling process, the key geometric features and non-geometric information required for the numerical simulation were extracted, and then were integrated with the cooling air fluid domain, the gas fluid domain and blade entity. The conjugated heat transfer computational domain model was completed. Based on the above research, a rapid modeling system was developed for modeling conjugated heat transfer computational domain model, which verified the effectiveness of the proposed method.
Keywords: computer aided design     turbine blade     conjugated heat transfer     numerical simulation     geometric modeling

1 涡轮叶片实体模型与气热耦合计算域模型

1.1 面向制造的涡轮叶片实体模型

 图 1 叶片内型实体建模与特征关系树 Fig. 1 Blade interior solid modeling and feature relationship tree
 图 2 叶片外型实体建模与特征关系树 Fig. 2 Blade exterior solid modeling and feature relationship tree
 图 3 叶片实体建模与特征关系树 Fig. 3 Blade solid modeling and feature relationship tree

1.2 面向气热耦合的涡轮叶片计算域模型

 图 4 传统气热耦合数值模拟计算域模型建模方法 Fig. 4 Traditional modeling method of conjugated heat transfer numerical simulation computational domain model

1) 涡轮叶片内流冷气域快速构建的通用方法。

2) 外流燃气域的生成要与叶片模型相适应，并可以进行灵活调整。

3) 关键几何特征的定位与生成等分析信息的提取。

 图 5 面向气热耦合的涡轮叶片计算域建模方案 Fig. 5 Conjugated heat transfer oriented modeling scheme of turbine blade computational domain
2 面向气热耦合的涡轮叶片冷气域建模及分析数据提取方法 2.1 涡轮叶片冷气域建模方法

 图 6 冷气域几何模型 Fig. 6 Geometric model of cooling air fluid domain
 图 7 冷气域模型构建流程 Fig. 7 Flowchart of cooling air fluid domain modeling

1) 模型参数化条件。Mo=MbMc，且ebeoec均不为空集。

2) 参数完备性条件。f11′、f12′、f13′与f11f12f13参数域一致。

3) 分析信息完整条件。Ac完整提取。

2.2 冷气域模型及关键算法

2.2.1 外型冷却特征

1) 气膜孔设计参数与建模参数

 图 8 气膜孔设计及相关参数示意 Fig. 8 Schematic diagram of film hole design and related parameters

 (1)
 (2)
 图 9 气膜孔设计角度与建模角度转换关系 Fig. 9 Conversion relationship between film hole design angle and modeling angle

2) 气膜孔“反相”实体定位原理

2.2.2 气膜孔快速定位算法与分析数据提取方法

 图 10 气膜孔“反相”实体生成方法 Fig. 10 Method for generating inverted entities for film holes

3 气热耦合燃气域建模方法

3.1 自适应管道求交算法

 图 11 叶片中各类曲线示意图 Fig. 11 Schematic diagram of various types of curves in blade

 图 12 管道半径试算示意图 Fig. 12 Schematic diagram of pipeline radius trial

 图 13 管道求交中弧线自动生成 Fig. 13 Automatic generation of pipeline intersection mean camber line
3.2 边界自动匹配算法

 图 14 燃气域几何模型 Fig. 14 Geometric model of gas fluid domain

4 建模方法实现

 图 15 面向气热耦合的涡轮叶片计算域模型快速建模 Fig. 15 Conjugated heat transfer oriented rapid modeling of turbine blade computational domain models
5 结论

1) 根据叶片内型和外型冷却特征，构建了外型冷却特征快速定位算法，实现了涡轮叶片内流冷气域通用生成方法。

2) 实现了外流燃气域根据不同叶型的叶片可以进行自动匹配与自适应裁剪的快速建模方法。

3) 通过在建模过程进行分析数据提取的方法，解决了后处理阶段几何特征定位困难、缺少分析信息的问题。

#### 文章信息

WANG Tian, XI Ping, HU Bifu, LI Jixing, SHI Xiaofei

A conjugated heat transfer oriented modeling method of turbine blade computational domain model

Journal of Beijing University of Aeronautics and Astronsutics, 2019, 45(1): 74-82
http://dx.doi.org/10.13700/j.bh.1001-5965.2018.0197