﻿ 一种高效利用天基激光能量清除空间碎片的方法<sup>*</sup>
 文章快速检索 高级检索

A method of efficiently using space-based laser energy to remove space debris
SHI Qianqian, ZHANG Yan, ZHAO Peng, WANG Chenglin
Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China
Received: 2018-04-27; Accepted: 2018-07-13; Published online: 2018-07-26 18:45
Corresponding author. ZHANG Yan, E-mail: zhyan1227@sina.com
Abstract: In view of the growing space debris pollution of space environment, the deorbit model of space-based laser removal of space debris is established. In this model, the effect of the angle between the speed increment and the space debris velocity on the height reduction of perigee is emphatically analyzed, and taking into account the influence of the distance between them, the concept of coefficient of energy assignment (CEA) is proposed from the perspective of energy utilization. According to the CEA, a pulsed laser energy assignment strategy is designed, and it can improve the energy utilization ability to remove space debris more efficiently compared with the way of average energy laser pulse cleaning space debris, illustrating the effectiveness of our removal strategy.
Keywords: space-based laser     space debris     deorbit model     multi-pulse     removal scheme

1 理论与仿真分析 1.1 天基激光能量清除空间碎片模型

 图 1 天基激光能量清除空间碎片模型 Fig. 1 Model of space debris removal by space-based laser energy
1.2 冲量作用角对碎片降轨效果的影响

rv可得此刻的比角动量常矢量为

 (1)

 (2)

 (3)

 (4)

 (5)

 图 2 空间碎片轨道坐标系 Fig. 2 Orbital coordinate system of space debris
 (6)

 (7)

 (8)

 (9)

1.3 仿真分析

 图 3 椭圆轨道上空间碎片近地点高度变化趋势 Fig. 3 Perigee height variation tendency of space debris on elliptical orbit

 偏近点角/(°) 最佳冲量作用角/(°) 近地点最终高度/km 0 117.1或242.1 899.6 90 165.3 894.5 180 180.0 892.1 270 194.7 894.507 3

2 脉冲激光能量分配策略与仿真 2.1 能量分配系数

 (10)

 (11)

 (12)

2.2 天基激光与空间碎片仿真运动的实现

 图 4 天基激光能量清除空间碎片的仿真流程 Fig. 4 Simulation flowchart of space-based laser energy removing space debris

2.3 高效利用天基激光能量策略

 轨道参数 天基激光 空间碎片 近地点高度/km 900 800 远地点高度/km 900 810 轨道倾角/(°) 30 30 近地点辐角/(°) 0 0 升交点赤经/(°) 80 80

“高效利用天基激光能量清除空间碎片”的策略参数设计：脉冲出射频率为1 Hz，当满足激光作用条件时，根据CEA值的大小决定脉冲激光出射的能量，如表 3所示。其他计算参数和脉冲激光能量平均方式的参数一致。

 CEA值 脉冲激光能量 lmax处速度增量/(m·s-1) 0.9~1.0 2Esingle 0.4 0.5~0.9 Esingle 0.2 0~0.5 0.5Esingle 0.1

 图 5 近地点高度随脉冲次数的变化趋势 Fig. 5 Variation of perigee height with number of laser pulses
 图 6 轨道偏心率与半长轴随脉冲次数的变化趋势 Fig. 6 Variation of orbital eccentricity and semi-major axis with number of laser pulses
 图 7 CEA值随脉冲次数的变化趋势 Fig. 7 Variation of CEA values with number of laser pulses

3 结论

1) 当冲量作用角在180°附近时，近地点降低幅度最明显，降轨效果最好。

2) 激光在空间碎片轨道近地点作用时，降轨效果不明显，越靠近远地点降轨效果越好。

3) 本文方法能够提高天激光能量的利用能力，更高效地实现空间碎片的降轨清除。

 [1] 李春来, 欧阳自远, 都亨. 空间碎片与空间环境[J]. 第四纪研究, 2002, 22(6): 540-551. LI C L, OUYANG Z Y, DU H. Space debris and space environment[J]. Quaternary Sciences, 2002, 22(6): 540-551. DOI:10.3321/j.issn:1001-7410.2002.06.008 (in Chinese) [2] 徐浩东, 李小将, 李怡勇, 等. 地基激光空间碎片清除技术研究[J]. 装备学院学报, 2011, 22(3): 71-75. XU H D, LI X J, LI Y Y, et al. Research on technology of space debris removal using ground-based laser[J]. Journal of the Academy of Equipment Command & Technology, 2011, 22(3): 71-75. DOI:10.3783/j.issn.1673-0127.2011.03.016 (in Chinese) [3] BORJA J A, TUN D. Deorbit process using solar radiation force[J]. Journal of Spacecraft & Rockets, 2015, 43(3): 685-687. [4] ASLANOV V, YUDINTSEV V. Dynamics of large space debris removal using tethered space tug[J]. Acta Astronautica, 2013, 91(10): 149-156. [5] IKI K, KAWAMOTO S, MORINO Y. Experiments and numerical simulations of an electrodynamic tether deployment from a spool-type reel using thrusters[J]. Acta Astronautica, 2014, 94(1): 318-327. DOI:10.1016/j.actaastro.2013.03.024 [6] FORWARD R L, HOYT R P, UPHOFF C W. Terminator tether (TM):A spacecraft deorbit device[J]. Journal of Spacecraft & Rockets, 2000, 37(2): 187-196. [7] NISHIDA S I, KAWAMOTO S, OKAWA Y, et al. Space debris removal system using a small satellite[J]. Acta Astronautica, 2009, 65(1): 95-102. [8] 陈小前. 航天器在轨服务技术[M]. 北京: 中国宇航出版社, 2009: 200-212. CHEN X Q. Spacecraft on-orbit service technology[M]. Beijing: China Astronautic Publishing House, 2009: 200-212. (in Chinese) [9] 王成林, 张艳, 王鲲鹏. 地基激光清除空间碎片的策略[J]. 北京航空航天大学学报, 2015, 41(11): 2137-2143. WANG C L, ZHANG Y, WANG K P. Strategy of removing space debris using ground-based lasers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2137-2143. (in Chinese) [10] 张玉军, 冯书兴. 主动式空间碎片清理研究[J]. 装备学院学报, 2010, 21(6): 78-82. ZHANG Y J, FENG S X. Research on active space debris removal[J]. Journal of the Academy of Equipment Command & Technology, 2010, 21(6): 78-82. (in Chinese) [11] MONROE A D K.Space debris removal using high-power ground-based laser[C]//International Society for Optics and Photonics.Bellingham: SPIE, 1994: 30264. https://www.researchgate.net/publication/234486278_Space_debris_removal_using_high-power_ground-based_laser [12] CHO M. Removal of orbital debris from low earth orbit by laser-generated drag[J]. Journal of Spacecraft & Rockets, 1994, 31(5): 920-922. [13] PHIPPS C R, ALBRECHT G, FRIEDMAN H, et al. ORION:Clearing near-earth space debris using a 20-kW, 530-nm, earth-based, repetitively pulsed laser[J]. Laser & Particle Beams, 1996, 14(1): 1-44. [14] SCHALL W O.Removal of small space debris with orbiting lasers[C]//High-Power Laser Ablation.International Society for Optics and Photonics.Bellingham: SPIE, 1998: 564-574. https://www.researchgate.net/publication/224802161_Removal_of_Small_Space_Debris_with_Orbiting_Lasers [15] BOHN W L. Pulsed COIL for space debris removal[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3612(6): 79-84. [16] CAMPBELL J W.Project ORION: Orbital debris removal using ground-based sensors and lasers: NASA-TM-108522[R].Hampton, VA: NASA Technical Memorandum, 1996. [17] 康博琨, 金星, 常浩. 空间碎片天基激光辐照下的轨道特性仿真分析[J]. 红外与激光工程, 2017, 46(3): 36-45. KANG B K, JIN X, CHANG H. Simulation analysis of orbit characteristics of space debris irradiated by space-based laser system[J]. Infrared and Laser Engineering, 2017, 46(3): 36-45. (in Chinese) [18] 张阔, 陆君, 杨贵龙, 等. 大功率TEA CO2激光远场发散角评估方法[J]. 红外与激光工程, 2015, 44(8): 2286-2291. ZHANG K, LU J, YANG G L, et al. Estimation of far-field divergence of high power TEA CO2 laser[J]. Infrared and Laser Engineering, 2015, 44(8): 2286-2291. DOI:10.3969/j.issn.1007-2276.2015.08.009 (in Chinese) [19] 王成林, 张艳, 王鲲鹏. 冲量耦合系数对激光辐照空间碎片冲量矢量的影响[J]. 激光与光电子学进展, 2016, 53(12): 165-173. WANG C L, ZHANG Y, WANG K P. Effect of impulse coupling coefficient on impulse vector of laser irradiating space debris[J]. Laser & Optoelectronics Progress, 2016, 53(12): 165-173. (in Chinese) [20] WANG C, ZHANG Y, WANG K. Impulse calculation and characteristic analysis of space debris by pulsed laser ablation[J]. Advances in Space Research, 2016, 58(9): 1854-1863. DOI:10.1016/j.asr.2016.07.018 [21] 温泉, 杨丽薇, 赵尚弘, 等. 天基激光清除小尺度空间碎片变轨模型研究[J]. 红外与激光工程, 2017, 46(3): 28-35. WEN Q, YANG L W, ZHAO S H, et al. Research on de-orbiting model of small scale space debris removal using space-based laser[J]. Infrared and Laser Engineering, 2017, 46(3): 28-35. (in Chinese) [22] PHIPPS C, BIRKAN M, BOHN W, et al. Review:Laser-ablation propulsion[J]. Journal of Propulsion & Power, 2010, 26(4): 609-637. [23] 杨武霖, 牟永强, 曹燕, 等. 天基激光清除空间碎片方案与可行性研究[J]. 航天器环境工程, 2015, 32(4): 361-365. YANG W L, MOU Y Q, CAO Y, et al. Active removal of space debris by space-based laser system and its feasibility analysis[J]. Spacecraft Environment Engineering, 2015, 32(4): 361-365. DOI:10.3969/j.issn.1673-1379.2015.04.004 (in Chinese)

#### 文章信息

SHI Qianqian, ZHANG Yan, ZHAO Peng, WANG Chenglin

A method of efficiently using space-based laser energy to remove space debris

Journal of Beijing University of Aeronautics and Astronsutics, 2018, 44(12): 2621-2627
http://dx.doi.org/10.13700/j.bh.1001-5965.2018.0241