﻿ 基于星下点机动的再入飞行器离轨规划<sup>*</sup>
 文章快速检索 高级检索

Deorbit planning of reentry vehicles using ground track manipulation
SHI Shufeng, SHI Peng, ZHAO Yushan
School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Received: 2018-03-02; Accepted: 2018-04-09; Published online: 2018-05-15 19:16
Foundation item: National Natural Science Foundation of China (11572019)
Corresponding author. ZHAO Yushan, E-mail:yszhao@buaa.edu.cn
Abstract: Aimed at the deorbit problem of reentry vehicles with constraints of reentry point location, a deorbit planning method using ground track manipulation is proposed in this paper. The deorbit trajectory design of reentry vehicles is constrained by the parameters of the real-time orbit and the aimed reentry point. First, based on the principles of orbital flight, the relationships between deorbit parameters and reentry point parameters are established with the model of impulse thrust in ellipse orbit. And the principle of thrust application for optimal deorbit is analyzed. Then, considering the influence of earth rotation and finite thrust, the necessary condition of direct deorbit is proposed. The strategy for determining deorbit location is developed with the method of nonlinear programming for the deorbit problem with latitude and longitude constraints of the reentry point. And the deorbit braking parameters conforming to the fuel optimal requirement are determined as a result. Finally, in the general case that the initial orbit does not satisfy the necessary condition of direct deorbit, the ground track manipulation method is proposed in terms of impulse thrust to satisfy the ground track constraints.
Keywords: reentry vehicle     optimal deorbit     finite thrust     nonlinear programming     ground track manipulation

1 离轨制动冲量模型

 图 1 离轨再入过程示意图 Fig. 1 Schematic of deorbit and reentry process

 图 2 椭圆轨道制动的制动点与再入点关系 Fig. 2 Relationship between braking point and reentry point of ellipse orbit braking

 (1)
 (2)
 (3)
 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

2 固定有限推力离轨规划

 图 3 轨道机动对星下点轨迹的影响 Fig. 3 Influence of orbit maneuver on ground track

 (10)

 (11)

 图 4 离轨制动参数规划流程 Fig. 4 Flowchart of deorbit braking parametric programming
3 再入点星下点机动

 (12)

 (13)

 (14)

 (15)

 (16)

 (17)

 (18)

4 离轨制动规划仿真

 参数 数值 a/km 6 878.140 e 0.000 3 i/(°) 42.000 Ω/(°) 122.000 ω/(°) 0 f/(°) 220.000

 参数 数值 弹道倾角/(°) -1.800 地理经度/(°) -75.000 地理纬度/(°) 18.000

 图 5 飞行器原轨道的星下点轨迹 Fig. 5 Ground track of original orbit of vehicle

 图 6 星下点机动结果 Fig. 6 Results of ground track manipulation

 图 7 离轨过程的星下点轨迹 Fig. 7 Ground track of deorbit process

 参数 数值 离轨时间/s 61 676.763 制动角/(°) -153.635 推力时间/s 164.783 燃料/kg 64.457

5 结论

1) 建立了冲量条件下计算椭圆轨道最优离轨参数的模型，并提出了限定再入点地理经纬度前提下直接离轨的必要条件。

2) 当轨道参数满足直接离轨必要条件时，完善以固定有限推力规划计算离轨点位置和离轨推力参数的方法。但对于一般任务来说，初始轨道参数往往不满足直接离轨条件，因此随后研究了一般初始轨道情况下对指定星下点目标经纬度的轨道机动方法。

3) 以具体任务参数对星下点机动调整和离轨制动理论进行了仿真验证，得到的仿真结果符合理论推导，满足任务精度要求。

 [1] RICHIE G.The common aero vehicle: Space delivery system of the future[C]//AIAA Space Technology Conference and Exposition.Reston: AIAA, 1999: 1-11. [2] POURNELLE P T.Component based simulation of the space operations vehicle and the common aero vehicle[D].Monterey: Naval Postgraduate School, 1999: 3-10. Component based simulation of the space operations vehicle and the common aero vehicle [3] 南英, 陈士橹, 吕学富, 等. 航天器再入轨迹与控制进展[J]. 导弹与航天运载技术, 1994(5): 1-10. NAN Y, CHEN S L, LYU X F, et al. The progress of reentry trajectory and control of space vehicle[J]. Missiles and Space Vehicles, 1994(5): 1-10. (in Chinese) [4] 陈洪波, 杨涤. 升力式再入飞行器离轨制动研究[J]. 飞行力学, 2006, 24(2): 35-39. CHEN H B, YANG D. Deorbit operations study of lifting reentry vehicle[J]. Flight Dynamics, 2006, 24(2): 35-39. DOI:10.3969/j.issn.1002-0853.2006.02.009 (in Chinese) [5] 高浩, 张科, 王佩. 天基拦截器过渡轨道优化研究[J]. 飞行力学, 2014, 32(2): 155-159. GAO H, ZHANG K, WANG P. Transitional orbit optimization research of space-based interceptor[J]. Flight Dynamics, 2014, 32(2): 155-159. (in Chinese) [6] 史树峰, 师鹏, 赵育善. 再入飞行器离轨制动在线规划方法[J]. 航天控制, 2017, 35(5): 25-29. SHI S F, SHI P, ZHAO Y S. The on-line planning method for deorbit problem of reentry vehicles[J]. Aerospace Control, 2017, 35(5): 25-29. (in Chinese) [7] YANG Y A, FENG Z R, SUN L Y, et al. Shift control method for the local time at descending node based on sun-synchronous orbit satellite[J]. Journal of Systems Engineering and Electronics, 2009, 20(1): 141-145. [8] 崔鹏, 傅忠谦. LEO卫星星下点轨迹保持策略优化研究[J]. 电子测量技术, 2013, 36(8): 41-44. CUI P, FU Z Q. Optimal research on satellite track keeping strategy for low earth orbit satellite[J]. Electronic Measurement Technology, 2013, 36(8): 41-44. DOI:10.3969/j.issn.1002-7300.2013.08.010 (in Chinese) [9] VTIPIL S D, NEWMAN B. Determining an earth observation repeat ground track orbit for an optimization methodology[J]. Journal of Spacecraft and Rockets, 2012, 49(1): 157-164. DOI:10.2514/1.A32038 [10] THOMAS C C, COSTANTINOS Z, JONATHAN T B. Responsive satellites through ground track manipulation using existing technology[J]. Journal of Spacecraft and Rockets, 2013, 50(1): 206-216. DOI:10.2514/1.A32263 [11] ZHU K J, LI J F, BAOYIN H X. Satellite scheduling considering maximum observation coverage time and minimum orbital transfer fuel cost[J]. Acta Astronautica, 2010, 66(2): 220-229. [12] CIRCI C, ORTORE E, BUNKHEILA F. Satellite constellations in sliding ground track orbits[J]. Aerospace Science and Technology, 2014, 39(1): 395-402. [13] THOMAS C C, JONATHAN T B. Responsiveness in low orbits using electric propulsion[J]. Journal of Spacecraft and Rockets, 2014, 51(3): 938-945. DOI:10.2514/1.A32405 [14] 赵汉元. 飞行器再入动力学和制导[M]. 长沙: 国防科技大学出版社, 1997: 289-299. ZHAO H Y. Reentry dynamics and guidance of space vehicle[M]. Changsha: National University of Defense Technology Publish House, 1997: 289-299. (in Chinese) [15] 王希季. 航天器进入与返回技术[M]. 北京: 宇航出版社, 1991: 115-120. WANG X J. Spacecraft entry and return technology[M]. Beijing: China Astronautic Publishing House, 1991: 115-120. (in Chinese) [16] ENRIGHT P J, CONWAY B A. Optimal finite thrust spacecraft trajectories using collation and nonlinear programming[J]. Journal of Guidance, Control and Dynamics, 1991, 14(5): 981-985. DOI:10.2514/3.20739

#### 文章信息

SHI Shufeng, SHI Peng, ZHAO Yushan

Deorbit planning of reentry vehicles using ground track manipulation

Journal of Beijing University of Aeronautics and Astronsutics, 2018, 44(10): 2141-2148
http://dx.doi.org/10.13700/j.bh.1001-5965.2018.0107