﻿ 考虑壁板刚度匹配的大型飞机复合材料机翼气动弹性优化设计<sup>*</sup>
 文章快速检索 高级检索

Aeroelastic optimization design of composite wing for large aircraft with panel stiffness matching
XIAO Zhipeng, QIAN Wenmin, ZHOU Lei
Beijing Key Laboratory of Civil Aircraft Structures and Composite Materials, Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing 102211, China
Received: 2017-10-09; Accepted: 2017-12-15; Published online: 2018-01-15 13:40
Corresponding author. XIAO Zhipeng, E-mail: xiaozhipeng@comac.cc
Abstract: A method of aeroelastic optimization design with consideration of panel stiffness matching was developed for the composite wing of large aircraft. The optimization was performed based on the sensitivity algorithm, and the objective was to minimize the structural mass subject to the constraints of panel stiffness matching, flutter speed, deformation at wingtip, design allowable and manufacturability. The composite wings were designed in the case of critical load conditions. The influences of various panel stiffness matching requirements on optimal design results were studied and they were compared with the conventional optimal design results. The results indicate that the structural weight will increase with consideration of panel stiffness matching. However, it has an advantage in local buckling design, damage tolerance design and manufacturing of large composite panel. The optimal design results can be significantly affected by the design ranges of panel stiffness matching, so these design ranges should be properly determined according to the requirements of design and manufacturing. The design allowable of compression is a crucial constraint of the aeroelastic optimization design for composite wing.
Keywords: composite wing     panel stiffness matching     aeroelasticity     flutter     structural optimization

1 理论基础 1.1 壁板刚度匹配关系

 (1)

1.2 静气动弹性分析

 (2)

1.3 颤振分析

 (3)

1.4 结构优化设计

2 复合材料机翼优化 2.1 复合材料机翼结构设计

2.2 结构有限元模型和气动力模型

 图 1 复合材料左机翼结构有限元模型 Fig. 1 Structural finite element model of left composite wing

 图 2 复合材料左机翼气动力模型 Fig. 2 Aerodynamic model of left composite wing
2.3 考虑壁板刚度匹配的复合材料机翼优化问题

1) 长桁-蒙皮刚度比约束。按照壁板制造工艺能力和损伤容限设计要求定义约束边界，并研究不同刚度比约束对于优化设计结果的影响。

2) 强度约束。要求机翼结构在严重载荷作用下都不发生材料失效，复合材料失效判定采用工程上常用的最大许用应变准则(设计许用值)，要求满足拉伸、压缩和剪切设计许用值约束。

3) 变形约束。要求在2种严重载荷作用情况下，均满足D∈[-5%, 12%], |δ|≤3°，D为翼尖垂直变形与参考展长的比值，以向上变形为正，δ为翼尖扭角，以攻角增加为正。

4) 工艺性约束。定义相邻复合材料铺层过渡之间的最大丢层比例不大于1/20，最大相对丢层厚度不大于1/3，以满足制造工艺要求。

5) 颤振约束。要求在海平面高度，机翼结构的临界颤振速度Vf≥320 m/s。在优化过程中，通过约束该颤振速度之下，各阶机翼模态的颤振阻尼来实现。

3 计算分析

 图 3 复合材料机翼在严重载荷下的变形 Fig. 3 Deformations of composite wings under critical load conditions

 刚度比约束 翼尖相对变形/% 翼尖扭角/(°) Case1 Case2 Case1 Case2 不考虑刚度比 9.07 -3.08 1.42 0.98 km∈[0.25, 0.5] 8.28 -2.82 1.33 0.90 km∈[0.5, 0.75] 8.66 -2.94 1.19 0.89 km∈[0.75, 1.0] 8.80 -2.98 1.25 0.92

 图 4 复合材料机翼上蒙皮压缩应变(Case1) Fig. 4 Compression strain of up skin for composite wing (Case1)

 刚度比约束 颤振速度/(m·s-1) 不考虑刚度比 407.8 km∈[0.25, 0.5] 423.1 km∈[0.5, 0.75] 407.4 km∈[0.75, 1.0] 406.9

 图 5 复合材料机翼结构相对质量 Fig. 5 Relative mass of composite wing

 图 6 复合材料机翼下蒙皮屈曲稳定性分布 Fig. 6 Buckling stability distribution of lower skin for composite wing

4 结论

1) 引入长桁-蒙皮刚度比约束，需要付出一定的质量代价，但对壁板稳定性设计、损伤容限设计和大型复合材料壁板的工艺制造有良好贡献，可降低后续详细设计时铺层调整的工作量。

2) 长桁在壁板剖面刚度中的贡献越高，越有利于机翼结构减重。同时，长桁-蒙皮刚度比约束要求不宜过高，否则难以得到满足设计要求的结构，需要合理选择长桁-蒙皮刚度比范围。

3) 压缩设计许用值是制约复合材料机翼气动弹性优化设计的关键约束，为充分发挥气动弹性优化的设计潜力，需要有针对性地提高复合材料结构压缩性能。

 [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24 (1): 1–12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24 (1): 1–12. DOI:10.3321/j.issn:1000-3851.2007.01.001 (in Chinese) [2] ZHANG X, LI Y. Damage tolerance and fail safety of welded aircraft wing panels[J]. AIAA Journal, 2012, 43 (7): 1613–1623. [3] ROUSE M, AMBUR D R. Damage tolerance and failure analysis of a composite geodesically stiffened compression panel[J]. Journal of Aircraft, 2015, 33 (3): 582–588. [4] CHRISTOS C C, MINNETYAN L. Defect/damage tolerance of pressurized fiber composite shells[J]. Composite Structures, 2001, 51 (2): 159–168. DOI:10.1016/S0263-8223(00)00141-0 [5] GURDAL Z, TATTING B F, WU C K. Variable stiffness composite panels:Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A, 2008, 39 (5): 911–922. DOI:10.1016/j.compositesa.2007.11.015 [6] 赵群, 丁运亮, 金海波. 基于压弯刚度匹配论则的复合材料加筋板结构优化设计[J]. 南京航空航天大学学报, 2010, 42 (3): 357–362. ZHAO Q, DING Y L, JIN H B. Structural optimization design of composite stiffened panels based on matching regulations of compression and bending stiffnesses[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42 (3): 357–362. DOI:10.3969/j.issn.1005-2615.2010.03.020 (in Chinese) [7] 乔巍, 姚卫星. 复合材料加筋板铺层优化设计的等效弯曲刚度法[J]. 计算力学学报, 2011, 28 (1): 158–162. QIAO W, YAO W X. Equivalent bending stiffness method for stacking sequence optimization of composite stiffed panel[J]. Chinese Journal of Computational Mechanics, 2011, 28 (1): 158–162. (in Chinese) [8] TERRENCE A W, DAVID K D. Induced drag reduction using aeroelastic tailoring with adaptive control surfaces[J]. Journal of Aircraft, 2006, 43 (1): 157–164. DOI:10.2514/1.12040 [9] GUO S J, CHENG W Y, CUI D G. Aeroelastic tailoring of composite wing structures by laminate layup optimization[J]. AIAA Journal, 2006, 44 (12): 3146–3149. DOI:10.2514/1.20166 [10] LIANG L, WAN Z Q, YANG C. Aeroelastic optimization on composite skins of large aircraft wings[J]. Science China Technological Sciences, 2012, 55 (4): 1078–1085. DOI:10.1007/s11431-011-4734-0 [11] DILLINGER J K S, KLIMMEK T, ABDALLA M M, et al. Stiffness optimization of composite wings with aeroelastic constraints[J]. Journal of Aircraft, 2013, 50 (4): 1159–1168. DOI:10.2514/1.C032084 [12] 周磊, 万志强, 杨超. 复合材料壁板铺层参数对大展弦比机翼气动弹性优化的影响[J]. 复合材料学报, 2013, 30 (5): 195–200. ZHOU L, WAN Z Q, YANG C. Effect of laminate parameter of composite skin on aeroelastic optimization of high-aspect-wing[J]. Acta Materiae Compositae Sinica, 2013, 30 (5): 195–200. DOI:10.3969/j.issn.1000-3851.2013.05.030 (in Chinese) [13] 万志强, 杨超. 大展弦比复合材料机翼气动弹性优化[J]. 复合材料学报, 2005, 22 (3): 145–149. WAN Z Q, YANG C. Aeroelastic optimization of a high-aspect-ratio composite wing[J]. Acta Materiae Compositae Sinica, 2005, 22 (3): 145–149. DOI:10.3321/j.issn:1000-3851.2005.03.028 (in Chinese) [14] RODDEN W P, JOHNSON E H. MSC/Nastran aeroelastic ana-lysis user's guide V68[M]. Los Angeles, CA: MSC.Software Corporation, 1994: 657-698. [15] 万志强, 杨超. 设计敏度在气动弹性遗传优化中的应用[J]. 北京航空航天大学学报, 2006, 32 (5): 508–512. WAN Z Q, YANG C. Application of design sensitivity in aeroelastic genetic optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32 (5): 508–512. DOI:10.3969/j.issn.1001-5965.2006.05.003 (in Chinese) [16] 林梦鹤, 孙宪学. 气动弹性剪裁中的响应值敏度[J]. 航空学报, 2001, 22 (1): 30–34. LIN M H, SUN X X. Response sensitivity in aeroelastic tailoring[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22 (1): 30–34. DOI:10.3321/j.issn:1000-6893.2001.01.007 (in Chinese) [17] 中国航空研究院. 复合材料结构稳定性分析指南[M]. 北京: 航空工业出版社, 2002: 137-141. Chinese Institute of Aeronautics. Analysis guide for composite structural stability[M]. Beijing: Aviation Industry Press, 2002: 137-141. (in Chinese) [18] 霍世慧, 王富生, 王佩艳, 等. 复合材料机翼加筋壁板稳定性分析[J]. 应用力学学报, 2010, 27 (2): 423–427. HUO S H, WANG F S, WANG P Y, et al. Stability analysis on the ribbed panel of the composite wing[J]. Chinese Journal of Applied Mechanics, 2010, 27 (2): 423–427. (in Chinese) [19] 金迪, 寇艳荣. 复合材料加筋壁板结构选型设计[J]. 复合材料学报, 2016, 33 (5): 1142–1146. JIN D, KOU Y R. Structural style-selection design of composite stiffened panel[J]. Acta Materiae Compositae Sinica, 2016, 33 (5): 1142–1146. (in Chinese)

#### 文章信息

XIAO Zhipeng, QIAN Wenmin, ZHOU Lei

Aeroelastic optimization design of composite wing for large aircraft with panel stiffness matching

Journal of Beijing University of Aeronautics and Astronsutics, 2018, 44(8): 1629-1635
http://dx.doi.org/10.13700/j.bh.1001-5965.2017.0613