﻿ 基于滚动时域优化的旋转弹解耦控制器设计<sup>*</sup>
 文章快速检索 高级检索

Design of decoupling controller for spinning missile based on receding horizon optimization
CHEN Wei, SUN Chuanjie, FENG Gaopeng, BAI Yunshan
Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, China
Received: 2017-05-02; Accepted: 2017-06-09; Published online: 2017-08-31 14:32
Foundation item: National Natural Science Foundation of China (U143010033)
Corresponding author. CHEN Wei, E-mail: chenweifenglaile@163.com
Abstract: The spinning missiles are subjected to external disturbances and uncertainties during flight, and there are the aerodynamic cross-linking, inertial cross-linking and control cross-linking. To realize stable flight, it is necessary to design decoupling controller. Therefore, a decoupling control method based on the receding horizon optimization (RHO) was proposed. The kinematic models of the spinning missile and the servo system were expressed in the form of state space, and the augmented equations of state were obtained based on the equations of state of the spinning missile, the command filters and the integral of the tracking error. The control value was calculated using the RHO based on the command filter, and in order to realize the decoupling control of the spinning missile, the controller gains were adjusted in real time according to the difference between the system output and the command signal. Through the acceleration control simulation results, it can be seen that the designed control system is basically not affected by the spinning rate, the modeling errors and the external disturbances, which has high robustness.
Key words: spinning missile     decoupling control     receding horizon optimization (RHO)     acceleration control     command filter

1 旋转弹动力学模型

 (1)
 (2)

1) 假设在一小段飞行过程中，弹体的速度不变，弹体的转速不变。

2) 假设在控制系统设计的相关研究中，忽略重力作用。

3) 假设迎角α、侧滑角β、偏航角ψ、弹道偏角ψV、偏航角微分和俯仰角微分为小量，它们之间的乘积为零。

4) 假设控制舵产生的升力和弹体受到的总升力相比是小量。

 (3)
 (4)

 (5)

 (6)

 (7)

 (8)

2 旋转条件下舵机系统动力学模型

 图 1 舵机系统的指令执行框图 Fig. 1 Command execution block diagram of servo system

 (9)

 (10)

 (11)

 (12)

3 解耦控制器设计

 (13)

 (14)

RHO优化控制的性能指标如下所示[16]

 (15)

 (16)

 (17)

 (18)

 (19)

 (20)

σc使得Hamilton函数值最小的必要条件为∂H/σc=0，有

 (21)

 (22)

 (23)

 (24)

 (25)

 (26)

 (27)

 (28)

 (28)

 (30)

 (31)
 (32)

 (33)

 (34)

 (35)
 图 2 基于RHO的控制系统结构 Fig. 2 Structure of control system based on RHO
4 仿真分析

RHO控制器设计参数为

 图 3 基于RHO控制器的仿真结果 Fig. 3 Simulation results based on RHO controller
5 结论

1) 旋转弹旋转导致控制通道出现耦合，随着转速的提高，舵机系统前向通道传递函数的增益将减小，舵机系统耦合通道传递函数的增益将增大，控制通道耦合加剧。

2) 在进行基于指令滤波器的RHO控制器设计中，将控制量设计为增广状态向量的线性组合。控制量中包含增广状态向量的部分充分利用反馈信息以达到保障基本稳定飞行的目的；截距控制量用来抑制建模误差和外界干扰的影响。

3) 本文设计的RHO控制器在滚动的时域区间内实时对控制参数进行更新，有效抑制了建模误差和外界干扰的影响，使得系统输出能够较好地跟踪指令信号，实现解耦控制。

 [1] 杨树兴, 赵良玉, 闫晓勇. 旋转弹动态稳定性理论[M]. 北京: 国防工业出版社, 2014: 1-20. YANG S X, ZHAO L Y, YAN X Y. Dynamic stability theory of spinning projectile[M]. Beijing: National Defence Industry Press, 2014: 1-20. (in Chinese) [2] 周伟. 旋转弹动态稳定性与鲁棒变增益控制[D]. 北京: 北京理工大学, 2016: 1-30. ZHOU W. Dynamic stability and robust variable gain control of spinning projectile[D]. Beijing: Beijing Institute of Technology, 2016: 1-30(in Chinese). [3] ZHOU W, YANG S X, DONG J L. Coning motion instability of spinning missiles induced by hinge moment[J]. Aerospace Science and Technology, 2013, 30 (1): 239–245. DOI:10.1016/j.ast.2013.08.008 [4] 陈罗婧, 刘莉, 于剑桥. 双通道控制旋转导弹自动驾驶仪解耦控制研究[J]. 北京理工大学学报, 2008, 28 (1): 11–14. CHEN L J, LIU L, YU J Q. Decoupling control of a double-channel control rolling missile autopilot[J]. Transaction of Beijing Institute of Technology, 2008, 28 (1): 11–14. (in Chinese) [5] 陈罗婧, 刘莉, 于剑桥. 双通道控制旋转导弹自动驾驶仪回路数学变换及其耦合性分析[J]. 北京理工大学学报, 2007, 27 (10): 847–850. CHEN L J, LIU L, YU J Q. Transform and coupling analysis of double-channel control rolling missile autopilot loop[J]. Transaction of Beijing Institute of Technology, 2007, 27 (10): 847–850. DOI:10.3969/j.issn.1001-0645.2007.10.001 (in Chinese) [6] 袁天保, 刘新建, 秦子增. 自旋弹弹导弹动力学与控制[J]. 宇航学报, 2006, 27 (2): 217–220. YUAN T B, LIU X J, QIN Z Z. Dynamic and control of spinning ballistic missile[J]. Journal of Astronautics, 2006, 27 (2): 217–220. (in Chinese) [7] 闫晓勇, 李克勇, 杨树兴. 基于动态逆理论的自旋弹控制方法[J]. 弹箭与制导学报, 2009, 29 (5): 83–86. YAN X Y, LI K Y, YANG S X. The control method of spinning missile based on dynamic inversion[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29 (5): 83–86. (in Chinese) [8] THEODOULIS S, WERNERT P. Flight control for a class of 155 mm spin-stabilized projectiles with course correction fuse[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2011: 241-245. [9] THEODOULIS S, GASSMANN V, WERNERT P. Guidance and control design for a class of spin-stabilized fin-controlled projectiles[J]. Journal of Guidance, Control, and Dynamics, 2013, 36 (2): 517–531. DOI:10.2514/1.56520 [10] THEODOULIS S, SEVE F, WERNERT P. Robust gain-scheduled autopilot design for spin-stabilized projectiles with a course-correction fuze[J]. Aerospace Science and Technology, 2015, 42 : 477–489. DOI:10.1016/j.ast.2014.12.027 [11] WARD D G, BARRON R L. A self-designing receding horizon optimal flight controller[C]//Proceedings of the American Control Conference. Washington, D. C. : Barron Associates, 1995: 3490-3494. [12] FAWZY M, ABOELELA M A S, RHMAN O A E, et al. Design of missile control system using model predictive control[J]. The Online Journal on Computer Science and Information Technology, 2011, 1 (3): 64–70. [13] BACHTIAR V. Multi-objective design of model predictive control and its application in missile autopilot and guidance[D]. Melbourne: University of Melbourne, 2016. [14] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2006: 60-70. QIAN X F, LIN R X, ZHAO Y N. Missile flight aerodynamics[M]. Beijing: Beijing Institute of Technology Press, 2006: 60-70. (in Chinese) [15] SONNEVELDT L, CHU Q P, MULDER J A. Nonlinear flight control design using constrained adaptive backstepping[J]. Journal of Guidance, Control, and Dynamics, 2007, 30 (2): 322–335. DOI:10.2514/1.25834 [16] 陈伟, 冯高鹏, 邓坤. 基于滚动时域优化的变后掠角飞机修正控制律设计[J]. 南京航空航天大学学报, 2017, 49 (1): 96–104. CHEN W, FENG G P, DENG K. Design of retrofit control law based on receding horizon optimal technique for variable sweep wing aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49 (1): 96–104. (in Chinese) [17] KIRK D E. Optimal control theory an introduction[M]. New York: Dover Puchblications, 2004: 90-93. [18] TODOROV E. Optimal control theory[M]. Massachusetts: MIT Press, 2006: 1-15.

#### 文章信息

CHEN Wei, SUN Chuanjie, FENG Gaopeng, BAI Yunshan

Design of decoupling controller for spinning missile based on receding horizon optimization

Journal of Beijing University of Aeronautics and Astronsutics, 2018, 44(4): 717-724
http://dx.doi.org/10.13700/j.bh.1001-5965.2017.0271