﻿ 基于模糊逻辑的交互式多模型滤波算法<sup>*</sup>
 文章快速检索 高级检索

1. 哈尔滨工程大学自动化学院, 哈尔滨 150001;
2. 江南工业集团有限公司, 湘潭 411100

Interactive multiple model filtering algorithm based on fuzzy logic
ZHOU Weidong1, LIU Lu1, TANG Jia2
1. College of Automation, Harbin Engineering University, Harbin 150001, China;
2. Jiangnan Industry Group Co., Ltd., Xiangtan 411100, China
Received: 2017-03-20; Accepted: 2017-06-16; Published online: 2017-08-31 14:30
Foundation item: National Natural Science Foundation of China (6157020038)
Corresponding author. ZHOU Weidong. E-mail: zhouweidong@hrbeu.edu.cn
Abstract: The convergence speed and the filtering precision are poor when the interactive multiple model (IMM) filtering algorithm is applied to track the anti-ship missile in S maneuver. Thus a fuzzy logic interactive multiple model (FLIMM) filtering algorithm is proposed by improving the model probability updating module of IMM filtering algorithm in three-dimensional space. Taking relative distance and angle of sight as observation information, the algorithm assumes that the target moves in two modes:uniform motion in a straight line and S maneuver. The simulation shows that the proposed algorithm can improve the convergence speed effectively and achieve higher tracking accuracy.
Key words: S maneuver     target tracking     interactive multiple model (IMM)     fuzzy logic     filtering algorithm

1 “蛇形”机动模型

“蛇形”机动模型描述的是一种目标做强机动的情况，目标机动加速度按正弦规律不断变化[5]。其既是一种特殊的转弯运动，又是一种特殊的匀速圆周运动，是多个半圆周运动的叠加，在每个半圆周，角速率变化为相反的方向，同时半径也在不停地改变。本文假设目标的“蛇形”机动发生在水平面上，即在x轴方向上和y轴方向上分别做速度为vx的直线运动和正弦运动，其运动方程为

 (1)

 (2)

 (3)

2 交互式多模型滤波算法

 (4)

IMM滤波算法主要包括输入交互、并行滤波、模型概率更新和输出数据融合4个步骤[7]，如图 1所示。

 图 1 IMM滤波算法原理框图 Fig. 1 Principle block diagram of IMM filtering algorithm

 (5)

1) 输入交互

 (6)

 (7)
 (8)

2) 并行滤波

 (9)
 (10)

 (11)

 (12)

 (13)

 (14)
 (15)

3) 模型概率更新

 (16)

 (17)

4) 输出数据融合

 (18)
 (19)

3 改进的交互式多模型滤波算法

 图 2 基于模糊逻辑的模型概率更新模块结构 Fig. 2 Structure of model probability updating module based on fuzzy logic

 (20)

1) 输入变量与输出变量的论域

2) 输入变量与输出变量的模糊子集

3) 确定隶属度函数[11]，如图 3~图 5所示。

 图 3 I1的隶属度函数 Fig. 3 Membership function of I1
 图 4 I2的隶属度函数 Fig. 4 Membership function of I2
 图 5 u的隶属度函数 Fig. 5 Membership function of u

 规则号 I1 I2 u 1 S N S 2 S Z S 3 S P M 4 M N S 5 M Z M 6 M P B 7 B N M 8 B Z B 9 B P B

4 仿真分析

 (21)

 (22)

 图 6 目标的运动轨迹 Fig. 6 Motion trail of target

 图 7 z向位置估计误差 Fig. 7 Estimation error of position in z axis
 图 8 z向速度估计误差 Fig. 8 Estimation error of velocity in z axis
 图 9 z向加速度估计误差 Fig. 9 Estimation error of acceleration in z axis

5 结论

 [1] 周荻. 寻的导弹新型导引规律[M]. 北京: 国防工业出版社, 2002: 11-26. ZHOU D. New type homing missile guidance law[M]. Beijing: National Defence Industry Press, 2002: 11-26. (in Chinese) [2] XING X F, ZUO L L, LEI S. Maneuvering target tracking using real-time input estimation[C]//Proceedings of the 1996 CIE International Conference of Radar Proceedings. Piscataway, NJ: IEEE Press, 1996: 731-734. [3] BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with applications to tracking and navigation:Theory algorithms and software[M]. New York: John Wiley & Sons.Inc, 2001: 115-178. [4] JOHNSTON L A, KRISHNAMURTHY V. An improvement to the interacting multiple model (IMM) algorithm[J]. IEEE Transactions on Signal Processing, 2001, 49 (12): 2909–2923. DOI:10.1109/78.969500 [5] 周宏仁, 敬忠良, 王培德. 机动目标跟踪[M]. 北京: 国防工业出版社, 1991: 89-122. ZHOU H R, JING Z L, WANG P D. Maneuver targets tracking[M]. Beijing: National Defence Industry Press, 1991: 89-122. (in Chinese) [6] 刘胜, 张红梅. 最优估计理论[M]. 北京: 科学出版社, 2011: 102-134. LIU S, ZHANG H M. The optimal estimation theory[M]. Beijing: Science Press, 2011: 102-134. (in Chinese) [7] VASUHI S, VAIDEHI V. Target tracking using interactive multiple model for wireless sensor network[J]. Information Fusion, 2016, 27 (1): 41–53. [8] LIU M Y, LI Y, ZHANG X J. A research on the weight of interactive multiple model in maneuvering target tracking[J]. Applied Mechanics and Materials, 2014, 568-570 : 1008–1011. DOI:10.4028/www.scientific.net/AMM.568-570 [9] 王立新, 王迎军. 模糊系统与模糊控制教程[M]. 北京: 清华大学出版社, 2003: 193-244. WANG L X, WANG Y J. The tutorial of fuzzy system with fuzzy logic[M]. Beijing: Tsinghua University Press, 2003: 193-244. (in Chinese) [10] 刘政, 马增强, 柳晓云, 等. 基于模糊推理的改进的交互式多模型算法[J]. 济南大学学报(自然科学版), 2017, 31 (2): 129–135. LIU Z, MA Z Q, LIU X Y, et al. The improved interactive multiple model algorithm based on fuzzy reasoning[J]. Journal of University of Jinan(Science and Technology), 2017, 31 (2): 129–135. (in Chinese) [11] 刘杨, 姜礼平, 王炜. 一种结合弹道规律的模糊交互式多模型算法[J]. 海军工程大学学报, 2015, 27 (1): 41–44. LIU Y, JIANG L P, WANG W. A fuzzy interactive multiple model algorithm combined with ballistic rule[J]. Journal of Naval Engineering University, 2015, 27 (1): 41–44. (in Chinese) [12] 国强, 贺紫兰. 一种新的模糊控制多模型算法在目标跟踪中的应用[J]. 哈尔滨工业大学学报, 2016, 48 (11): 123–128. GUO Q, HE Z L. The application of a new fuzzy multiple model control algorithm in target tracking[J]. Journal of Harbin Institute of Technology, 2016, 48 (11): 123–128. (in Chinese) [13] 付魏, 郑宾. 基于模糊控制交互式多模型粒子滤波的静电机目标跟踪[J]. 兵工学报, 2014, 35 (1): 42–48. FU W, ZHENG B. Electrostatic maneuvering target tracking based on fuzzy interacting multiple model particle filter[J]. Acta Armamentarii, 2014, 35 (1): 42–48. (in Chinese) [14] 张翼飞, 邓方林, 顾文锦. 反舰导弹末端机动弹道设计及弹道仿真[J]. 计算机仿真, 2005, 22 (2): 19–22. ZHANG Y F, DENG F L, GU W J. Anti-ship missile terminal maneuver trajectory design and trajectory simulation[J]. Computer Simulation, 2005, 22 (2): 19–22. (in Chinese) [15] 李新国, 方群. 有翼导弹飞行动力学[M]. 西安: 西北工业大学出版社, 2005: 26-63. LI X G, FANG Q. Flight dynamics of winged missile[M]. Xi'an: Northwestem Polytechnical University Press, 2005: 26-63. (in Chinese)

#### 文章信息

ZHOU Weidong, LIU Lu, TANG Jia

Interactive multiple model filtering algorithm based on fuzzy logic

Journal of Beijing University of Aeronautics and Astronsutics, 2018, 44(3): 413-419
http://dx.doi.org/10.13700/j.bh.1001-5965.2017.0160