﻿ 基于弹性的体系组件重要度及恢复策略<sup>*</sup>
 文章快速检索 高级检索

Resilience-based component importance and recovery strategy for system-of-systems
PAN Xing, JIANG Zhuo, YANG Yanjing
School of Reliability and System Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Received: 2016-09-08; Accepted: 2016-12-30; Published online: 2017-02-10 09:12
Foundation item: National Natural Science Foundation of China (71171008, 71571004)
Corresponding author. PAN Xing, E-mail:panxing@buaa.edu.cn
Abstract: System-of-systems (SoS) is always under the influence of both intra and extra disruptive events. SoS architecture is the foundation of SoS design and construction, whose resilience is not only an significant indicator to reflect the ability to recover from disruptions, but also an important embodiment of evolution of SoS. Based on resilience, an effective SoS architecture evaluation method was proposed to conduct component importance measures (CIMs). In the method, the resilience of SoS architecture was defined in detail, relevant mathematical models were built, and influence of performance loss and recovery time on component importance were comprehensively weighed. Then, according to analysis of various disruptive events and recovery strategy, an optimized model for SoS resilience based on CIMs was proposed, and the optimized result of the proposed model on recovery capability of SoS was mainly analyzed. Finally, an example of evaluating resilience of SoS was introduced to validate the availability of the proposed model and method, and the final result shows that the optimized recovery strategy contributes to improving the recovery efficiency of SoS greatly.
Key words: system-of-systems architecture     network     resilience     component importance measures(CIMs)     recovery strategy

1 体系结构的弹性

 图 1 干扰事件发生后体系性能变化示意图 Fig. 1 Schematic of SoS performance transition under occurrence of disruption event

 (1)

 (2)

2 基于弹性的体系组件重要度分析 2.1 体系结构的网络描述

 (3)

2.2 体系性能变化过程

 (4)

 (5)

 (6)

2.3 组件重要度分析建模

 (7)

2.4 组件重要度排序

 (8)

 (9)

 (10)
3 体系的恢复策略优化

 (11)

 (12)

 (13)

4 案例应用

 图 2 体系结构的拓扑[18] Fig. 2 Topology of SoS architecture[18]
4.1 组件重要度计算

 图 3 各组件的组件重要度累积概率分布曲线 Fig. 3 Cumulative probability distribution curves of component importance for each component

 图 4 各组件的科普兰评分 Fig. 4 Copeland score for each component
4.2 恢复策略的优化分析

 图 5 体系性能恢复曲线 Fig. 5 Performance recovery curves of SoS

 编号 重要度排序/修复顺序 体系恢复效率 优化的比率/% 99 2>10>12>7>6 1.350 3 1.95 45 10>2>12>7>6 1.348 8 1.83 111 2>12>10>7>6 1.348 6 1.82 96 12>2>10>7>6 1.347 7 1.75 109 2>12>7>10>6 1.324 5

 编号 重要度排序/修复顺序 体系恢复效率 优化的比率/% 25 1>8>3>9>11 1.488 8 12.40 27 1>8>9>3>11 1.488 8 12.40 33 1>3>9>8>11 1.486 6 12.24 31 1>3>8>9>11 1.481 6 11.86 109 11>9>3>1>8 1.324 5

 图 6 体系性能恢复曲线对比 Fig. 6 Comparison of performance recovery curves of SoS
5 结论

1) 体系结构弹性概念的提出更为全面地考虑了体系性能损耗与恢复过程，为分析和评价不同类型的体系提供了新的思路。

2) 体系结构弹性建模与仿真工作，定量地分析了单个组成系统对于体系整体的影响，有助于体系的保障和维护。

3) 弹性优化指标和修复策略的改进，提高了系统或组件重要度分析的准确性，优化了体系结构弹性及体系性能恢复的能力。

 [1] 游光荣, 初军田, 吕少卿, 等. 关于武器装备体系研究[J]. 军事运筹与系统工程, 2010, 24 (24): 15–22. YOU G R, CHU J T, LV S Q, et al. Study on weapon equipment system-of-systems[J]. Military Operations Research and Systems Engineering, 2010, 24 (24): 15–22. (in Chinese) [2] 潘星, 黄元星, 尹宝石. 基于功能和联接的装备体系结构[J]. 系统工程与电子技术, 2012, 34 (10): 2054–2057. PAN X, HUANG Y X, YIN B S. Equipment system-of-systems architecture based on functionality and connectivity[J]. Systems Engineering and Electronics, 2012, 34 (10): 2054–2057. (in Chinese) [3] LIU H, TIAN Y L, GAO Y, et al. System of systems oriented flight vehicle conceptual design:Perspectives and progresses[J]. Chinese Journal of Aeronautics, 2015, 28 (3): 617–635. DOI:10.1016/j.cja.2015.04.017 [4] 王华, 赵英俊, 钟季龙. 装备体系结构的复杂网络混合模型建模[J]. 火力与指挥控制, 2015, 40 (8): 70–73. WANG H, ZHAO Y J, ZHONG J L. Hybrid model of complex networks of equipment system-of-systems[J]. Fire Control and Command Control, 2015, 40 (8): 70–73. (in Chinese) [5] DELAURENTIES D.Understanding transportation as a system-of-systems design problem[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2005:1-14. [6] DAN D L, CALLAWAY R K. A system-of-systems perspective for future public policy decisions[J]. Review of Policy Research, 2004, 21 (6): 829–837. DOI:10.1111/ropr.2004.21.issue-6 [7] NAHAVANDI S, CREIGHTON D, LE V T, et al.Future integrated factories:A system of systems engineering perspective[M]//FATHI M. Integrated systems:Innovations and applications. Berlin:Springer, 2015:147-161. [8] UDAY P, MARAIS K B. Resilience-based system importance measures for system-of-systems[J]. Procedia Computer Science, 2014, 28 : 257–264. DOI:10.1016/j.procs.2014.03.033 [9] FANG Y P, PEDRONI N, ZIO E. Resilience-based component importance measures for critical infrastructure network systems[J]. IEEE Transactions on Reliability, 2016, 65 (2): 502–512. DOI:10.1109/TR.2016.2521761 [10] DESSAVRE D G, RAMIREZ-MARQUEZ J E, BARKER K. Multidimensional approach to complex system resilience analysis[J]. Reliability Engineering and System Safety, 2015, 149 : 34–43. [11] ZOBEL C W, KHANSA L. Characterizing multi-event disaster resilience[J]. Computers and Operations Research, 2014, 42 : 83–94. DOI:10.1016/j.cor.2011.09.024 [12] FATURECHI R, LEVENBERG E, MILLER-HOOKS E. Evaluating and optimizing resilience of airport pavement networks[J]. Computers and Operations Research, 2014, 43 : 335–348. DOI:10.1016/j.cor.2013.10.009 [13] OMER M, MOSTASHARI A, LINDEMANN U. Resilience analysis of soft infrastructure systems[J]. Procedia Computer Science, 2014, 28 : 873–882. DOI:10.1016/j.procs.2014.03.104 [14] JANIC M. Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event[J]. Transportation Research Part A:Policy & Practice, 2015, 71 : 1–16. [15] YOUN B D, HU C, WANG P, et al. Resilience-driven system design of complex engineered systems[J]. Journal of Mechanical Design, 2011, 133 (10): 1179–1188. [16] CARDOSO S R, BARBOSA-POVOAS A P F D, RELVAS S, et al. Resilience assessment of supply chains under different types of disruption[J]. Computer Aided Chemical Engineering, 2014, 34 : 759–764. DOI:10.1016/B978-0-444-63433-7.50111-5 [17] UDAY P, MARAIS K. Exploiting stand-in redundancy to improve resilience in a system-of-systems (SoS)[J]. Procedia Computer Science, 2013, 16 (4): 532–541. [18] BARKER K, RAMIREZ-MARQUEZ J E, ROCCO C M. Resilience-based network component importance measures[J]. Reliability Engineering and System Safety, 2013, 117 (2): 89–97.

#### 文章信息

PAN Xing, JIANG Zhuo, YANG Yanjing

Resilience-based component importance and recovery strategy for system-of-systems

Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(9): 1713-1720
http://dx.doi.org/10.13700/j.bh.1001-5965.2016.0727