文章快速检索 高级检索

1. 北京科技大学 机械工程学院, 北京 100083;
2. 装备学院 航天装备系, 北京 101416;
3. 北京控制工程研究所, 北京 100190

Maglev electromagnetic radial spherical magnetic bearing design
ZHAO Hang1 , MIAO Cunxiao1 , ZHANG Liyuan1 , HAN Tian1 , REN Yuan2 , FAN Yahong3
1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China ;
2. Department of Space Equipment, Equipment Academy, Beijing 101416, China ;
3. Beijing Institute of Control Engineering, Beijing 100190, China
Received: 2016-01-07; Accepted: 2016-04-08; Published online: 2016-04-21 13:08
Foundation item: the Fundamental Research Funds for the Central Universities (FRF-TP-15-024A2, FRF-TP-14-019A1); National Natural Science Foundation of China (51475472, 61403396)
Corresponding author. E-mail:miao_cunxiao@163.com
Abstract: Due to the large interference torque of deflected cylindrical magnetic bearing, this paper designs a novel electromagnetic radial spherical magnetic bearing. When the spherical bearing deflects or offsets, the electromagnetic force will keep pointing to the center of the rotor, which can reduce the interference of the stator poles on the rotor torque and improve the control precision of the magnetic bearing. First, the working principle of the spherical magnetic bearing is illustrated and its mathematical model is established. By using the theory of equivalent magnetic circuit method and finite element numerical method, the current stiffness and displacement stiffness of the spherical bearing are calculated. The results of the two methods agree well with each other, indicating that the finite element model is reasonable. Then, the finite element method is used to analyze the interference torques when spherical magnetic bearings and cylindrical magnetic bearing deflect. The calculating results show that the interference torque of the spherical magnetic bearing is 1.8% that of the cylindrical magnetic bearing when rotor reaches the maximum deflection angle 0.3°, showing that spherical magnetic bearing relative to the cylindrical magnetic bearing has greatly improved in the ability of anti-interference torque. Finally, the interference torques of the spherical magnetic bearings with X and Z offsets are also analyzed, showing that the calculation results are quite to the deflection torque. Therefore, the designed electromagnetic radial spherical magnetic bearing has the advantage of low interference torque, and can be used for high-precision control and angular rate detection of inertial actuator in aerospace engineering.
Key words: spherical magnetic bearing     cylindrical magnetic bearing     interference torque     deflect     offset

﻿随着航天技术的发展，卫星、空间站等航天器对于姿态控制的精度要求不断提高，传统机械飞轮渐显不足[1-3]。磁悬浮飞轮采用磁轴承支承，消除了机械轴承的接触式摩擦磨损，无需润滑，具有高力矩精度、微振动和主动振动抑制的功能等优点，提高了控制力矩的精度和稳定度，是高精度对地观测卫星的理想惯性执行机构[4-6]

1 径向球面磁轴承结构及工作原理

 图 1 径向球面磁轴承结构 Fig. 1 Structure of radial spherical magnetic bearing

2 径向球面磁轴承建模分析 2.1 等效磁路

 图 2 径向球面磁轴承的等效磁路 Fig. 2 Equivalent magnetic circuit of radial spherical magnetic bearing

2.2 数学模型

 (1)

 (2)
 (3)

 (4)

 (5)

 (6)

 (7)
3 结构参数设计 3.1 定子磁极面积和气隙长度的确定

 (8)

3.2 其他尺寸的确定

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

 (15)
4 设计实例与仿真计算

 参数 数值 D1/mm 158 D2/mm 190 h/mm 16 ll/mm 70 t/mm 50 tt/mm 10 e/mm 10 d1/mm 157.3 d2/mm 100 δ0/mm 0.35 δ/mm 0.2 N 200 dd/mm 0.25×2 M/kg 6 Imax/A 1 I0/A 0.5 注：e—定子齿轴向间距;d2—转子内径。

 状态 起浮状态 偏置状态 悬浮状态 气隙磁感应强度/T 0.4,0.05 0.3 0.41,0.19 定子背轭磁感应强度/T 0.60 0.52 0.69 承载力/N 88 201 72.6 控制电流/A 0.45 0 0.18 电流密度/(A·mm-2) 9.7 5.1 6.9 偏移/mm 0.20 0 0.01

 图 3 径向球面磁轴承定、转子有限元模型 Fig. 3 Finite element model of stator and rotor ofradial spherical magnetic bearing

 图 4 径向球面磁轴承3种状态下的磁场强度分布 Fig. 4 Radial spherical magnetic bearing magnetic field intensity distribution under three states

 图 5 径向球面磁轴承设计结果 Fig. 5 Radial spherical magnetic bearing design results

5 球面、柱面磁轴承偏转时力矩分析

 图 6 球面、柱面磁轴承有限元模型 Fig. 6 Finite element model of spherical and cylindricalmagnetic bearing

 图 7 球面、柱面磁轴承偏转干扰力矩分析 Fig. 7 Analysis of interference torque of spherical andcylindrical magnetic bearing with deflection

 图 8 球面磁轴承产生X方向和Z方向偏移时的干扰力矩 Fig. 8 Interference torque of spherical magnetic bearings with X and Z offset

6 结 论

1) 运用有限元法对比计算球面磁轴承与柱面磁轴承在偏转时所产生的干扰力矩，当转子达到最大偏转角0.3°时，球面磁轴承的干扰力矩为0.04 N·m，柱面磁轴承的干扰力矩为2.2 N·m，球面磁轴承的干扰力矩约为柱面磁轴承干扰力矩的1.8%，表明球面磁轴承相对于柱面磁轴承在抗干扰能力方面有很大的提升。

2) 进一步分析球面磁轴承在X方向或Z方向发生偏移时所产生的电磁干扰力矩，其数值与偏转干扰力矩量级相当，同样表明球面磁轴承的抗干扰能力强于柱面磁轴承。

3) 本文提出的径向球面纯电磁磁轴承无论在偏转或偏移等情形下均具有极低的干扰力矩，可用于磁轴承高精度控制，并为磁悬浮陀螺角速率检测奠定基础。

 [1] ﻿BABUSKA V,BEATTY S M,BLONK B J,et al.A review of technology developments in flywheel attitude control and energy transmission systems[C]//IEEE Aerospace Conference Proceedings.Piscataway,NJ:IEEE Press,2004,4:2784-2800. [2] ALEXANDER L, PANAGIOTIS T. A combined application of loop shaping and hinf synthesis to control high-speed fly-wheels[J]. IEEE Transactions on Control Systems Technology, 2005, 13 (5) : 766 –777. DOI:10.1109/TCST.2005.847344 [3] 刘彬, 房建成, 刘刚. 一种磁悬浮陀螺飞轮方案设计与关键技术分析[J]. 航空学报, 2011, 32 (8) : 1478 –1487. LIU B, FANG J C, LIU G. Design of a magnetically suspended gyrowheel and analysis of key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32 (8) : 1478 –1487. (in Chinese) [4] 刘迎澍, 黄田. 磁悬浮轴承研究概述[J]. 机械工程学报, 2000, 36 (11) : 5 –9. LIU Y S, HUANG T. Survey of the research of magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2000, 36 (11) : 5 –9. DOI:10.3901/JME.2000.11.005 (in Chinese) [5] 张鹏波, 张庆荣, 房建成. 高速磁悬浮转子稳定性研究及其在控制力矩陀螺中应用[J]. 中国惯性技术学报, 2006, 14 (3) : 47 –53. ZHANG P B, ZHANG Q R, FANG J C. Stability of active magnetic bearing for control moment gyroscope[J]. Journal of Chinese Inertial Technology, 2006, 14 (3) : 47 –53. (in Chinese) [6] 王曦, 房建成, 樊亚洪, 等. 磁悬浮飞轮用轴向力偏转永磁偏置轴向磁轴承磁路耦合特性[J]. 航空学报, 2011, 32 (4) : 649 –663. WANG X, FANG J C, FAN Y H, et al. Magnetic circuit coupling characteristics of axial gimballing magnetic bearing biased with permanent magnet for magnetically suspended flywheel[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32 (4) : 649 –663. (in Chinese) [7] 赵旭升, 邓智泉, 王晓琳, 等. 永磁偏置磁轴承的研究现状及其发展[J]. 电工技术学报, 2009, 24 (9) : 9 –20. ZHAO X S, DENG Z Q, WANG X L, et al. Research status and development of permanent magnet biased magnetic bearings[J]. Teansactions of China Electrotechnical Society, 2009, 24 (9) : 9 –20. (in Chinese) [8] SUN J J, FANG J C. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing[J]. Journal of Magnetism and Magnetic Materials, 2011, 323 (2) : 202 –208. DOI:10.1016/j.jmmm.2010.08.053 [9] FANG J C, SUN J J, XU Y L, et al. A new structure for permanent-magnet-biased axial hybrid magnetic bearings[J]. IEEE Transactions on Magnetics, 2009, 45 (12) : 5319 –5325. DOI:10.1109/TMAG.2009.2024687 [10] XU S L, FANG J C. A novel conical active magnetic bearing with claw structure[J]. IEEE Transactions on Magnetics, 2014, 50 (5) : 1 –8. [11] HAN B C, ZHENG S Q, WANG X, et al. Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application[J]. IEEE Transactions on Magnetics, 2012, 48 (6) : 1959 –1966. DOI:10.1109/TMAG.2011.2180731 [12] SUN J J, REN Y, FANG J C. Passive axial magnetic bearing with Halbach magnetized array in magnetically suspended control moment gyro application[J]. Journal of Magnetism and Magnetic Materials, 2011, 323 (15) : 2103 –2107. DOI:10.1016/j.jmmm.2011.02.020 [13] 房建成, 孙津济. 一种磁悬浮飞轮用新型永磁偏置径向磁轴承[J]. 北京航空航天大学学报, 2006, 32 (11) : 1304 –1307. FANG J C, SUN J J. New permanent magnet biased radial magnetic bearing in magnetic suspending flywheel application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32 (11) : 1304 –1307. (in Chinese) [14] 王曦, 石泳, 樊亚洪, 等. 磁悬浮飞轮用新型异极性永磁偏置径向磁轴承[J]. 宇航学报, 2014, 35 (12) : 1457 –1464. WANG X, SHI Y, FAN Y H, et al. A new type of heteropolar radial magnetic bearing biased with permanent magnet for magnetically suspended[J]. Journal of Astronautics, 2014, 35 (12) : 1457 –1464. (in Chinese) [15] 王曦, 房建成, 樊亚洪, 等. 磁悬浮飞轮用嵌环式永磁偏置径向磁轴承[J]. 机械工程学报, 2011, 47 (14) : 171 –183. WANG X, FANG J C, FAN Y H, et al. Thimble permanent magnet biased radial magnetic bearing for magnetically suspended flywheel[J]. Journal of Mechanical Engineering, 2011, 47 (14) : 171 –183. DOI:10.3901/JME.2011.14.171 (in Chinese) [16] 侯二永, 刘昆. 混合磁轴承磁场与磁力解析计算[J]. 机械工程学报, 2012, 48 (6) : 193 –198. HOU E Y, LIU K. Analytical calculation of magnetic field and force for hybrid magnetic bearing[J]. Journal of Mechanical Engineering, 2012, 48 (6) : 193 –198. DOI:10.3901/JME.2012.06.193 (in Chinese) [17] 刘程子, 邓智泉, 梅磊, 等. 永磁体位于转子上的混合型轴向磁轴承原理分析与参数设计[J]. 南京航空航天大学学报, 2012, 44 (6) : 847 –854. LIU C Z, DENG Z Q, MEI L, et al. Principle analysis and parameter design of hybrid axial magnetic bearing with permanent magnet in rotor[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44 (6) : 847 –854. (in Chinese) [18] 高琳, 徐宗海, 朱凯, 等. 锥形磁悬浮轴承的建模与解耦控制[J]. 中国电机工程学报, 2013, 33 (6) : 153 –160. GAO L, XU Z H, ZHU K, et al. Modeling and decoupling control of conical magnetic bearings[J]. Proceedings of the CSEE, 2013, 33 (6) : 153 –160. (in Chinese) [19] 王志强, 刘刚, 李红. 磁轴承用电涡流位移传感器串扰产生及抑制方法研究[J]. 仪器仪表学报, 2010, 31 (5) : 1035 –1040. WANG Z Q, LIU G, LI H. Research on crosstalk noise of eddy current displacement sensor for activemagnetic bearing[J]. Chinese Journal of Scientific Instrument, 2010, 31 (5) : 1035 –1040. (in Chinese)

#### 文章信息

ZHAO Hang, MIAO Cunxiao, ZHANG Liyuan, HAN Tian, REN Yuan, FAN Yahong

Maglev electromagnetic radial spherical magnetic bearing design

Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(1): 159-166
http://dx.doi.org/10.13700/j.bh.1001-5965.2016.0027