文章快速检索 高级检索

1. 空军工程大学 航空航天工程学院, 西安 710038;
2. 武警工程大学 装备工程学院, 西安 710086;
3. 空军航空大学 飞行教官训练基地, 蚌埠 233000

Movement rule of a vehicle obliquely water-entry at low speed
LI Yongli1,2 , FENG Jinfu1 , QI Duo1 , YANG Jian1 , HU Junhua1 , XU Baowei3
1. School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710038, China ;
2. College of Equipment Engineering, Engineering University of CAPF, Xi'an 710086, China ;
3. Flying Instructor Training Base, Air Force Aviation University, Bengbu 233000, China
Received: 2016-03-02; Accepted: 2016-06-02; Published online: 2016-06-30 09:04
Foundation item: National Natural Science Foundation of China (51541905, 61502534)
Corresponding author. Tel.:029-84787514-601, E-mail:wcsfjf@163.com
Abstract: This paper proposes a single control strategy to solve the problem of difficult transmedia vehicle control. The proposed control strategy is just to control the vehicle's air navigation, but not to control the underwater navigation. The hydrodynamic model of a vehicle obliquely water-entry at low speed is founded to analyze the motion characteristics. Two methods are used to simulate the vehicle's water-entry in the same condition:numerical simulation method and theoretical model calculation method. And the results of the two methods can validate the hydrodynamic model founded in this paper. The water-entry movement in the conditions of different initial velocities, different angles, and different attack angles is simulated by this hydrodynamic model and the simulation is analyzed. And the change rule of the vehicle's gestures and position when water-entry is obtained by analysis. This water-entry rule will guide a series of follow-up researches, such as underwater navigation and water-exit process.
Key words: water-entry movement     dynamic model     theoretical model calculation     ballistic trajectory     gesture

1 动力学模型构建 1.1 物理模型

 图 1 航行器物理模型示意图 Fig. 1 Schematic diagram of vehicle physical model
 (1)

1.2 受力分析

 图 2 航行器入水作用力分析 Fig. 2 Force analysis of vehicle water-entry

1.2.1 重力G

 (2)

 (3)

1.2.2 浮力B

 (4)
 (5)

1.2.3 流体作用力F

1)理想流体作用力Fi

 (6)
 (7)

 (8)

 (9)

 (10)

2)黏性流体作用力Fμ

 图 3 CFD仿真得到的黏性流体动力系数与攻角、速度的关系 Fig. 3 Relationship between dynamic coefficients of simulation by CFD and attack angle and speed
 (11)

 (12)

 (13)

 (14)
1.3 动力学模型

 (15)

 (16)

2 模型验证

 图 4 航行器入水过程CFD仿真结果 Fig. 4 Results of vehicle water-entry process simulated by CFD

 图 5 质心运动轨迹变化对比 Fig. 5 Comparison of centroid trajectory
 图 6 倾斜角度对比 Fig. 6 Comparison of inclination angle
 图 7 轴向位移对比 Fig. 7 Comparison of axial displacement
 图 8 径向位移对比 Fig. 8 Comparison of radial displacement
 图 9 速度对比 Fig. 9 Comparison of velocity
 图 10 转动角速度对比 Fig. 10 Comparison of rotational angular velocity

3 模型仿真

3.1 仿真1

 图 11 初始入水速度对质心运动轨迹的变化 Fig. 11 Change of centroid trajectory under different initial water-entry velocities
 图 12 初始入水速度对倾斜角度的变化 Fig. 12 Change of inclination angle under different initial water-entry velocities
 图 13 初始入水速度对攻角的变化 Fig. 13 Change of attack angle under different initial water-entry velocities
 图 14 初始入水速度对转动角速度的变化 Fig. 14 Change of rotational angular velocity under different initial water-entry velocities
 图 15 初始入水速度对轴向速度的变化 Fig. 15 Change of axial velocity under different initial water-entry velocities
 图 16 初始入水速度对径向速度的变化 Fig. 16 Change of radial velocity under different initial water-entry velocities

3.2 仿真2

 图 17 初始入水角度对质心运动轨迹的变化 Fig. 17 Change of centroid trajectory under different initial water-entry angles
 图 18 初始入水角度对倾斜角度的变化 Fig. 18 Change of inclination angle under different initial water-entry angles
 图 19 初始入水角度对攻角的变化 Fig. 19 Change of attack angle under different initial water-entry angles
 图 20 初始入水角度对转动角速度的变化 Fig. 20 Change of rotational angular velocity under different initial water-entry angles
 图 21 初始入水角度对轴向速度的变化 Fig. 21 Change of axial velocity under different initial water-entry angles
 图 22 初始入水角度对径向速度的变化 Fig. 22 Change of radial velocity under different initial water-entry angles

3.3 仿真3

 图 23 初始攻角对质心运动轨迹的变化 Fig. 23 Change of centroid trajectory under different initial attack angles
 图 24 初始攻角对倾斜角度的变化 Fig. 24 Change of inclination angle under different initial attack angles
 图 25 初始攻角对攻角的变化 Fig. 25 Change of attack angle under different initial attack angles
 图 26 初始攻角对转动角速度的变化 Fig. 26 Change of rotational angular velocity under different initial attack angles
 图 27 初始攻角对轴向速度的变化 Fig. 27 Change of axial velocity under different initial attack angles
 图 28 初始攻角对径向速度的变化 Fig. 28 Change of radial velocity under different initial attack angles

α0 < 0°时，初始攻角越大，倾斜角变大趋势越大，负向转动角速度越大，对应的攻角变化越大；径向速度变小趋势越大，而轴向速度变小趋势基本一致，弹道越容易向下弯曲，入水深度越大，水平位移越小。

4 结论

1)航行器入水过程中，受初始状态影响较大。

2)入水速度越大，航行器姿态变化越小，弹道越容易保持稳定，入水深度和水平位移越大。

3)入水角度越大，弹道越容易保持稳定，越不易发生弯曲，入水深度越大，水平位移越小。

4)攻角的大小和方向对航行器入水过程影响较大，攻角的值越大，姿态变化越大，弹道越容易弯曲。

 [1] EASTGATE J, GODDARD R.Submersible aircraft concept design study[C]//11th International Conference on Fast Sea Transportation, FAST 2011.Alexandria:American Society of Naval Engineers, 2011:813-820. [2] KATHRYN W.Submersible aircraft concept design study-Amendment1:NSWCCD-CISD-2011/015[R].Carderock, MD:Naval Surface Warfare Center Carderock Division, 2011. [3] 严忠汉. 试论鱼雷入水问题[J]. 中国造船, 2002, 43 (3) : 88 –93. YAN Z H. A brief neview of water-entry problems for torpedo[J]. Ship Building of China, 2002, 43 (3) : 88 –93. (in Chinese) [4] WAUGH J G, STUBSTAD G W.Hydroballistics modeling:AD A 007529[R].Washington, D.C.:NASA, 1975. [5] MAY A.Water-entry & cavity running behavior of missiles:AD A 020429[R].Washington, D.C.:NASA, 1975. [6] 何春涛, 王聪, 何乾坤, 等. 圆柱体低俗入水空泡试验研究[J]. 物理学报, 2012, 61 (13) : 134701 . HE C T, WANG C, HE Q K, et al. Low speed water-entry of cylindrical projictile[J]. Acta Physica Sinica, 2012, 61 (13) : 134701 . (in Chinese) [7] 何春涛, 王聪, 魏英杰, 等. 圆柱体垂直入水空泡形态试验[J]. 北京航空航天大学学报, 2012, 38 (11) : 1542 –1546. HE C T, WANG C, WEI Y J, et al. Vertical water entry cavity of cylinder body[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38 (11) : 1542 –1546. (in Chinese) [8] 马庆鹏, 何春涛, 王聪, 等. 球体垂直入水空泡实验研究[J]. 爆炸与冲击, 2014, 34 (2) : 174 –180. MA Q P, HE C T, WANG C, et al. Experiment investigation on vertical water-entry cavity of sphere[J]. Explosion and Shock Waves, 2014, 34 (2) : 174 –180. (in Chinese) [9] 胡青青.不同倾角下钝体入水后的超空泡流动的实验观察及数值计算[D].杭州:浙江理工大学, 2014:32-35. HU Q Q.Experimental observation and numerical calculation of supercavity flow of blunt body under different inlination angle into the water[D].Hangzhou:Zhejiang Sci-Tech University, 2014:32-35(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10338-1014226386.htm [10] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究[J]. 爆炸与冲击, 2011, 31 (6) : 579 –584. ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31 (6) : 579 –584. (in Chinese) [11] 顾建农, 张志宏, 王冲, 等. 旋转弹头水平入水空泡及弹道实验研究[J]. 兵工学报, 2012, 33 (5) : 540 –544. GU J N, ZHANG Z H, WANG C, et al. Experimental research for cavity and ballistics of a rotating bullet entraining water levelly[J]. Acta Armamentarii, 2012, 33 (5) : 540 –544. (in Chinese) [12] 陈宇翔, 郜冶, 刘乾坤. 应用VOF方法的水平圆柱入水数值模拟[J]. 哈尔滨工程大学学报, 2011, 32 (11) : 1439 –1442. CHEN Y X, GAO Y, LIU Q K. Numerical simulation of water-entry in a horizontal circular cylinder using the volume of fluid (VOF) method[J]. Journal of Harbin Engineering University, 2011, 32 (11) : 1439 –1442. (in Chinese) [13] 何春涛, 王聪, 闵景新, 等. 回转体匀速垂直入水早期空泡数值模拟研究[J]. 工程力学, 2012, 29 (4) : 237 –243. HE C T, WANG C, MIN J X, et al. Numerical simulation of early air-cavity of cylinder cone with vertical water-entry[J]. Engineering Mechanics, 2012, 29 (4) : 237 –243. (in Chinese) [14] 魏照宇, 石秀华, 王银涛, 等. 水下航行器高速斜入水冲击的探索仿真研究[J]. 西北工业大学学报, 2010, 28 (5) : 718 –723. WEI Z Y, SHI X H, WANG Y T, et al. Exploring high-speed oblique water entry impact of an underwater vehicle[J]. Journal of Northwestern Polytechnical University, 2010, 28 (5) : 718 –723. (in Chinese) [15] 王永虎, 石秀华. 空投鱼雷斜入水初始弹道数值分析[J]. 弹道学报, 2012, 24 (2) : 92 –95. WANG Y H, SHI X H. Numerical analysis for initial hydroballistics of airborne missile during oblique water-entry impact[J]. Journal of Ballistics, 2012, 24 (2) : 92 –95. (in Chinese) [16] PARK M S, JUNG Y R. Numerical study of impact force and ricochet behavior of high speed water-entry bodies[J]. Computers & Fluids, 2003, 32 (7) : 939 –951. [17] 严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005 : 26 . YAN W S. Torpedo mechanics[M]. Xi'an: Northwestern Polytechnical University Press, 2005 : 26 . (in Chinese) [18] 廖剑晖, 由小川, 吕海波, 等. 发展时变附加质量方法模拟飞行器出水过程[J]. 工程力学, 2012, 29 (4) : 202 –209. LIAO J H, YOU X C, LV H B, et al. Development of a time-varying added mass method in the simulations of the water-exit process of underwater vehicles[J]. Engineering Mechanics, 2012, 29 (4) : 202 –209. (in Chinese) [19] 罗格维诺维奇·T·B.自由边界流动的水动力学[M].施红辉, 译.上海:上海交通大学出版社, 2012:129-131.ЛОГВИНООВЧ Г В. Hydrodynamics of free-boundary flows[M].SHI H H, translated.Shanghai:Shanghai Jiao Tong University Press, 2012:129-131(in Chinese). [20] WILSON M B, KELLEY T R. Low froude number hydrodynamic performance of a flat plate hydrofoil[J]. Drag Forces, 1976 : 77 . [21] 刘曜. 波浪对运载器出水姿态角的影响[J]. 舰船科学技术, 2005, 27 (3) : 32 –34. LIU Y. Wave effect on a submerged missile capsule traveling near-surface[J]. Ship Science and Technology, 2005, 27 (3) : 32 –34. (in Chinese)

#### 文章信息

LI Yongli, FENG Jinfu, QI Duo, YANG Jian, HU Junhua, XU Baowei

Movement rule of a vehicle obliquely water-entry at low speed

Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(12): 2698-2708
http://dx.doi.org/10.13700/j.bh.1001-5965.2016.0153