文章快速检索 高级检索

1. 唐山轨道客车有限责任公司, 唐山 063035;
2. 北京航空航天大学 机械工程及自动化学院, 北京 100083

Multi-objective topological optimization of heat insulation structures used in high-speed train
LI Minggao1 , LI Ming1 , HAN Lu1 , ZHAO Hongzhe2
1. Tangshan Railway Vehicle Co., Ltd., Tangshan 063035, China ;
2. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Received: 2015-08-24; Accepted: 2015-10-30; Published online: 2016-05-25 12: 00
Foundation item: National Key Technology Research and Development Program of China (2013BAG24B02)
Corresponding author. Tel.:0315-3089497 E-mail:sjc-liminggao@tangche.com
Abstract: For the high-speed train, the characteristics of heat insulation structures are the significant consideration in performance evaluation. The structures utilized in floor, side-wall, and ceiling are researched. The objective of this paper is to improve their performances of stiffness, heat insulation and weight. The thickness of profile would be reduced (the thickness of blanket of glass wool would increase) by parameter optimization in order to improve the heat-insulating property. The topological optimization is implemented to change the load transfer path and to enhance the stiffness of structures. The optimized result is hence achieved, and the manufacturability process is carried out. Finally, the performances of stiffness, heat insulation and weight are improved. And the effectiveness of the analysis is validated by finite element simulation. Consequently, this paper can provide quick calculations for the heat insulation structures of high-speed train.
Key words: high-speed train     heat insulation structures     topological optimization     stiffness     manufacturability processing

1 多目标拓扑优化方案 1.1 整体思路

 图 1 优化思路 Fig. 1 Scheme of optimization

 图 2 优化流程图 Fig. 2 Flowchart of optimization
1.2 材料插值模型

E0Ee分别为单元初始弹性模量和优化后弹性模量,k0ke分别为单元优化前和优化后的刚度矩阵,则存在以下关系式:

1.3 拓扑优化问题的描述

 (1)

 (2)

 (3)
1.4 优化准则算法

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

1.5 拓扑优化中的数值计算不稳定现象

 (11)

2 隔热结构拓扑优化模型的建立 2.1 工程化假设

1) 车体的很多部位,其受力与传热情况不同。本文将针对车体几个典型部位(如侧墙、地板和平顶等)进行拓扑优化,每个部位提出2种结构,以满足不同的使用环境和应用需要。

2) 考虑高速列车的实际应用,隔热结构必须满足外部的安装条件。因此,在拓扑优化的设计初始求解域中给予体现。同时,部分安装条件还需要在约束条件中给出,其中包括尺寸条件、边界环境条件等。例如,某结构需要留有线缆的通过孔,必须在约束条件中给予考虑。

3) 考虑高速列车的制造成本,隔热结构内部的加工必须满足可制造性优良、成本低廉的要求。为此,拓扑优化之后的结构要进行可制造化处理。首先,通过自动轮廓提取程序提取并建立模型。在此基础上,利用设计人员的工程经验,对模型进行修正。

2.2 传热与受力情况

 图 3 车体受力情况示意图 Fig. 3 Diagrammatic sketch of load case on a train

1) 车体受到6 000 Pa的气密性载荷,方向垂直于车体各壁面。

2) 沿车身长度方向,受到1 500 kN的面内载荷。假设车体结构截面的面积为As,沿车身长度方向的面内应力为1 500/As×103 Pa。

3) 车体地板要承受旅客与货物的质量,此质量为53 t。假设地板的面积为Af,其将额外受到竖直向下的应力为53/Af×104 Pa。

2.3 拓扑优化的载荷、位移边界条件

 图 4 车体断面受力示意图 Fig. 4 Diagrammatic sketch of load case on cross-section of train

 图 5 地板1的边界条件示意图 Fig. 5 Diagrammatic sketch of boundary condition of floor 1

 图 6 其他结构的边界条件示意图 Fig. 6 Diagrammatic sketch of boundary condition of other structures
3 拓扑优化结果

 图 7 拓扑优化结果 Fig. 7 Results of topological optimization

 结构 型材厚度/mm 地板1 地板2 侧墙1 侧墙2 平顶1 平顶2 原结构 70 70 50 50 50 50 优化后结构 60 61 42 41 40 39

 图 8 平顶2的可制造化处理结果 Fig. 8 Manufacturability processing result of ceiling 2
4 有限元仿真验证

 图 9 优化前后的刚度对比 Fig. 9 Stiffness comparison between pre and post optimization
 图 10 优化前后的应力对比 Fig. 10 Stress comparison between pre and post optimization

 结构 整体厚度/mm 上边界厚度/mm 下边界厚度/mm 玻璃棉毡厚度/mm 相对质量/% 最大挠度/mm 最大应力/MPa 传热系数/(W·(m2·℃)-1) 原结构 70 2.8 3 40 14.6 0.162 14.3 0.875 优化后结构 60 3.0 3 50 15.7 0.017 11.1 0.700

5 结 论

1) 车体的型材部分主要用来承受载荷,而玻璃棉毡主要用来隔热。因此,通过参数优化降低型材厚度(增加玻璃棉毡的厚度)来提高隔热性能,通过拓扑优化改善传力路径,提高刚度性能的设计方法是合理的。

2) 本文采用的SIMP材料插值模型、优化准则算法在车体隔热结构多目标拓扑优化的应用中可有效改善相关性能。

3) 根据设计人员的经验，可进行拓扑优化结果的可制造化处理,从而可应用于工程实际中。

 [1] 马晓婧.铝型材与多隔热层组合板传热特性的实验与数值研究[D].兰州:兰州交通大学,2014:7-20. MA X J.Experimental and numerical studies of heat transfer characteristics of the layer combined with aluminum extrusion and multi insulation material layers[D].Lanzhou:Lanzhou Jiaotong University,2014:7-20. (in Chinese). Cited By in Cnki (0) | Click to display the text [2] 尤芳, 陈建军, 曹鸿钧, 等. 随机变量下的热传导结构拓扑优化设计[J]. 西安电子科技大学学报,2014, 41 (6) : 127 –134. YOU F, CHEN J J, CAO H J, et al. Topology optimization design of heat conduction structures with random variables[J]. Journal of Xidian University,2014, 41 (6) : 127 –134. (in Chinese). Cited By in Cnki (0) | Click to display the text [3] 李红霞, 杨弘, 李德才. 高速列车车体断面优化数值分析[J]. 铁道车辆,2007, 45 (2) : 8 –10. LI H X, YANG H, LI D C. Analysis of optimized values of the cross section of the carbodies of high speed trains[J]. Rolling Stock,2007, 45 (2) : 8 –10. (in Chinese). Cited By in Cnki (0) | Click to display the text [4] 戚林, 张海柱, 黎荣, 等. 基于特征的高速列车铝合金车体断面参数化建模[J]. 兰州交通大学学报,2015, 34 (1) : 109 –113. QI L, ZHANG H Z, LI R, et al. Parametric modeling of aluminum alloy body section of high-speed trains base on features[J]. Journal of Lanzhou Jiaotong University,2015, 34 (1) : 109 –113. (in Chinese). Cited By in Cnki (0) | Click to display the text [5] 张军, 兆文忠, 李永华, 等. 基于APDL高速铝合金车体参数化建模[J]. 大连交通大学学报,2009, 30 (4) : 13 –17. ZHANG J, ZHAO W Z, LI Y H, et al. Research on parameter modeling for aluminum alloy rail vehicle body[J]. Journal of Dalian Jiaotong University,2009, 30 (4) : 13 –17. (in Chinese). Cited By in Cnki (0) | Click to display the text [6] 邹远.高速列车车体断面优化设计[D].成都:西南交通大学,2011:22-32. ZOU Y.Optimization design of carbody cross section for high speed trains[D].Chengdu:Southwest Jiaotong University,2011:22-32. (in Chinese). Cited By in Cnki (0) | Click to display the text [7] 李欣伟, 刘宇, 范乐天, 等. 基于拓扑优化的有轨电车车体设计技术研究[J]. 铁道机车车辆,2015, 35 . LI X W, LIU Y, FAN L T, et al. Tram design technology study based on topology optimization[J]. Railway Locomotive & Car,2015, 35 . (in Chinese). Cited By in Cnki (0) | Click to display the text [8] 何智成, 陈少伟, 李光耀, 等. 基于面光滑有限元的复杂三维结构拓扑优化[J]. 中国机械工程,2015, 26 (7) : 864 –870. HE Z C, CHEN S W, LI G Y, et al. Topology optimization using FS-FEM for complex three-dimensional models[J]. China Mechanical Engineering,2015, 26 (7) : 864 –870. (in Chinese). Cited By in Cnki (0) | Click to display the text [9] 杜家政, 卢立晗, 赵振洋. 基频约束的框架结构拓扑优化[J]. 北京工业大学学报,2015, 41 (4) : 534 –541. DU J Z, LU L H, ZHAO Z Y. Topology optimization for frame structures with base frequency constraint[J]. Journal of Beijing University of Technology,2015, 41 (4) : 534 –541. (in Chinese). Cited By in Cnki (0) | Click to display the text [10] 范文杰, 范子杰, 苏瑞意. 汽车车架结构多目标拓扑优化方法研究[J]. 中国机械工程,2008, 19 (12) : 1505 –1508. FAN W J, FAN Z J, SU R Y. Research on multi-objective topology optimization on bus chassis frame[J]. China Mechanical Engineering,2008, 19 (12) : 1505 –1508. (in Chinese). Cited By in Cnki (0) | Click to display the text [11] 刘宇, 张生芳, 宋雪萍, 等. 动力平板车车架结构的拓扑优化设计[J]. 中国机械工程,2014, 12 (1) : 34 –37. LIU Y, ZHANG S F, SONG X P, et al. Topological optimization design on frame structure of power platform trailers[J]. China Mechanical Engineering,2014, 12 (1) : 34 –37. (in Chinese). Cited By in Cnki (0) | Click to display the text [12] 臧晓蕾, 谷正气, 米承继, 等. 矿用车车架结构的静动态多目标拓扑优化[J]. 汽车工程,2015, 37 (5) : 566 –570. ZANG X L, GU Z Q, MI C J, et al. Static/dynamic multi-objective topology optimization of the frame structure in a mining truck[J]. Automotive Engineering,2015, 37 (5) : 566 –570. (in Chinese). Cited By in Cnki (0) | Click to display the text [13] 焦洪宇, 周奇才, 吴青龙, 等. 桥式起重机箱型主梁周期性拓扑优化设计[J]. 机械工程学报,2014, 50 (23) : 134 –139. JIAO H Y, ZHOU Q C, WU Q L, et al. Periodic topology optimization of the box-type girder of bridge crane[J]. Journal of Mechanical Engineering,2014, 50 (23) : 134 –139. (in Chinese). Cited By in Cnki (0) | Click to display the text [14] 李清伟. 焊接机器人大臂有限元分析及拓扑优化[J]. 组合机床与自动化加工技术,2014 (11) : 63 –64. LI Q W. The finite element analysis and topological optimization design for welding robot's arm[J]. Modular Machine Tool & Automatic Manufacturing Technique,2014 (11) : 63 –64. (in Chinese). Cited By in Cnki (0) | Click to display the text [15] ZUO K T. Research of theory and application about topology optimization of continuum structure[J]. Wuhan:Huazhong University of Science and Technology,2004 : 31 –35. Click to display the text [16] LI D M, ZHANG X M, GUAN Y S, et al. Multi-objective topology optimization of thermo-mechanical compliant mechanisms[J]. Chinese Journal of Mechanical Engineering,2011, 24 (6) : 1123 –1129. Click to display the text [17] DIAZ A, SIGMUND O. Checkerboard patterns in layout optimization[J]. Structure Optimization,1995, 10 (1) : 40 –45. Click to display the text

文章信息

LI Minggao, LI Ming, HAN Lu, ZHAO Hongzhe

Multi-objective topological optimization of heat insulation structures used in high-speed train

Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(5): 878-884
http://dx.doi.org/10.13700/j.bh.1001-5965.2015.0539