文章快速检索 高级检索

1. 西北工业大学自动化学院, 西安 710129;
2. 郑州轻工业学院电气信息工程学院, 郑州 450002;
3. 北京航空航天大学航空科学与工程学院, 北京 100083

Stability analysis and optimization for pneumatic cabin pressure regulating system
ZHENG Xinhua1,2, XIE Lili1 , REN Junxue3
1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China;
2. School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
3. School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Received: 2015-01-08; Accepted: 2015-04-10; Published online： 2015-05-21 15:31
Foundation item: Aeronautical Science Foundation of China(20100653006)
Corresponding author. Tel.: 029-88491623 E-mail: xielili@nwpu.edu.cn
Abstract: Pressure oscillation arises in cabin of aircraft equipped with the considered pressure regulating system. To solve the problem, the scheme of cabin pressure regulating system was introduced and analyzed. The system in differential pressure flight phase is simplified according to actual components participating in the pressure modulating. The simplified system was taken as an example for stability analysis. The nonlinearity of the system was analyzed in details. The describing function was obtained and the negative inverse describing function curve was plotted. The charging and discharging dynamic of hole-container structure was studied, and it was found that the charging and discharging transient was almost same in the condition. Then the transfer function of hole-container structure was built as first-order element, and the similarities and differences between them were pointed out. Describing function method was employed to analyze stability of the system, and a way of achieving stability was proposed. Full-physical simulation result shows that the required stability is achieved by this way.
Key words: aircraft cabin     pressure regulating     pneumatic     stability     optimization     describing function

1 工作原理

 图 1 座舱压力调节系统结构图 Fig. 1 座舱压力调节系统结构图

 图 2 余压飞行段系统结构图 Fig. 2 Diagram of differential pressure flight phase
2 气动放大器的非线性特性

 图 3 气动放大器的结构原理与活门2的喷嘴结构 Fig. 3 Functional structure of pneumatic amplifier and nozzle of valve 2

1) 若PCON < PA,则膜片1在大小为PA-PCON的压差作用下向1腔方向发生形变,活门1打开,气动放大器的低压气源PAL对2腔内的高气压进行泄放,直至PA=PCON,压差消失,膜片回复原位,活门1恢复到关闭状态。

2) 若PCON>PA,则膜片2和挡板2在大小为PCON-PA的压差作用下向2腔方向发生形变,挡板2推动滚珠,活门2打开,气动放大器的高压气源PAH对2腔进行充气,直至PA=PCON,压差消失,膜片回复原位,活门1恢复到关闭状态。

3) 若PCON=PA,则活门1和活门2均保持关闭状态。

1) 避免在平衡工作点附近,小幅的压力波动通过气动放大器进入排气活门控制腔而影响排气活门的开度。

2) 避免在平衡工作点气体通过活门1和(或)活门2的边缘缝隙形成流动从而造成输出压力的波动。

 图 4 削峰非线性环节的输入输出波形 Fig. 4 Input and output of peak-clipping nonlinearity

 图 5 气动放大器削峰非线性特性的-1/N(A)曲线 Fig. 5 -1/N(A) curve for peak-clipping nonlinearity of pneumatic amplifier
3 传递函数

3.1 小孔-气容结构的充放气特性

 图 6 小孔-气容结构的充放气过程与一阶环节的阶跃响应 Fig. 6 Transient of charge and discharge of hole-container structure and step response of first-order element

3.2 控制系统各环节传递函数的确定

 图 7 小孔-气容结构充放气的幅相特性与一节环节的幅相特性 Fig. 7 Amplitude-phase characteristics of charge and discharge of hole-container structure and amplitude-phase characteristics of first-order element

4 系统的稳定性分析与设计 4.1 系统结构

 图 8 座舱压力调节系统框图 Fig. 8 Block diagram of cabin pressure regulating system

4.2 稳定性分析与优化

 图 9 Nyquist曲线与-1/N(A)曲线的关系 Fig. 9 Relationships between Nyquist plot and -1/N(A) curve

 图 10 不同K值下系统稳定时间的仿真结果 Fig. 10 Simulation results of setting time for system with different K

 图 11 kD=4.19N/cm时排气活门控制腔内压力的全物理仿真结果 Fig. 11 Result of full-physical simulation for pressure in control chamber of outflow valve when kD=4.19N/cm
5 结论

1) 可以大大提高座舱压力的舒适性水平,保障飞行员良好的工作状态,使其免受座舱压力波动的带来的不适。

2) 为气动式座舱压力调节系统动态性能的提高奠定了坚实的基础。在保证系统稳定的前提下,可以重新设计并大大提高其动态性能。

3) 为该气动式座舱压力调节系统应用于各种新型军用飞机提供了理论依据。

4) 对其他应用领域气动系统的稳定性设计,具有重要的参考价值和借鉴意义。

 [1] TAYLOR P J.Cabin pressure control systems for general aviation aircraft:SAE technical paper 800606[R].Detroit:SAE,1980. [2] LINNET K,CRABTREE R.What's next in commercial aircraft environmental control systems:SAE technical paper 932057[R].Detroit:SAE,1993. [3] SCHROEDER E H.Development of a cabin pressure control system for transport type aircraft:SAE technical paper 560282[R].Detroit:SAE,1956. [4] KEMPER J M.Cabin pressure control system:2513332[P].1950-07-04. [5] BRUDNICKI M J.Pneumatic autoschedule cabin pressure controller:4130051[P].1978-12-19. [6] FUJITA T.Effective area of nonmetal diaphragm in pneumatic control[J].Effective Area of Nonmetal Diaphragm in Pneumatic Control,1987,20(1):57-62. [7] CIBULA E,DONLAGIC D.Miniature fiber-optic pressure sensor with a polymer diaphragm[J].Applied Optics,2005,44(14):2736-2744. Click to display the text [8] 白海云.飞机座舱压力调节系统高原适应性设计研究[C]//中国航空学会.探索 创新 交流——第六届中国航空学会青年科技论坛文集(下册).北京:中国航空学会,2014:1444-1448. BAI H Y.Design and research of the aircraft cockpit pressure regulating system for high altitude take-off and landing[C]//Science and Technology Forum of CSAA Youth on Exploration,Innovation and Communication.Beijing:Chinese Society of Aeronautics and Astronautics,2014:1444-1448(in Chinese). Cited By in Cnki [9] 徐扬禾,孙长祝,朱东明.带放大器的气动式座舱压力调节器动态特性计算和分析[J].北京航空学院学报,1983(3):41-49. XU Y H,SUN C Z,ZHU D M.The calculation and analysis of the dynamic characteristic for pneumatic cabin pressure regulator with an amplifier[J].Journal of Beijing Institute of Aeronautics and Astronautics,1983(3):41-49(in Chinese). Cited By in Cnki | Click to display the text [10] SAE Aerospace.Aircraft cabin pressurization criteria:ARP1270B[S].Detroit:SAE,2010:46-53 [11] SPEALMAN C R,CHERRY J C.Middle ear perception of pressure and pain in descent from altitude[J].The Journal of Aviation Medicine,1958,29(2):106-110. Click to display the text [12] WAGGONER J N.Human tolerance to changes in aircraft cabin pressurization[J].Aerospace Medicine,1967,38:299-301. [13] 郑新华,谢利理,刘丽卓,等.比例调压组件动态特性研究[J].机械科学与技术,2013,32(9):1287-1290. ZHENG X H,XIE L L,LIU L Z,et al.Study on dynamic characteristics of proportional pressure modulating suit[J].Mechanical Science and Technology for Aerospace Engineering,2013,32(9):1287-1290(in Chinese). Cited By in Cnki | Click to display the text [14] 郑新华,谢利理,刘丽卓,等.负压活门特性[J].中国机械工程,2014,25(22):3033-3037. ZHENG X H,XIE L L,LIU L Z,et al.Characterization and optimization of negative pressure relief valve[J].China Mechanical Engineering,2014,25(22):3033-3037(in Chinese). Cited By in Cnki (1) | Click to display the text [15] 霍昱旭,李玉忍,宋颖慧.飞机座舱压力气动调节系统的建模与仿真[J].计算机仿真,2014,31(1):36-40. HUO Y X,LI Y R,SONG Y H.Modeling and simulation of aircraft cabin pressure's pneumatic regulator system[J].Computer Simulation,2014,31(1):36-40(in Chinese). Cited By in Cnki [16] ZHENG X H,XIE L L,LIU L Z.Stability analysis of pneumatic cabin pressure regulating system with complex nonlinear characteristics[J].Journal of Control Science and Engineering,2015:1-8. Click to display the text [17] 蔡茂林.现代气动技术理论与实践,第九讲:等温容器[J].液压气动与密封,2008,28(4):90-93. CAI M L.Modern theory and practice of pneumatic technology,lecture 9:Isothermal container[J].Hydraulics Pneumatics & Seals,2008,28(4):90-93(in Chinese). Cited By in Cnki (4) [18] 蔡茂林.现代气动技术理论与实践,第一讲:气动元件的流量特性[J].液压气动与密封,2007,27(2):44-48. CAI M L.Modern theory and practice of pneumatic technology,lecture 1:Characteristic of pneumatic elements[J].Hydraulics Pneumatics & Seals,2007,27(2):44-48 (in Chinese). Cited By in Cnki (39)

#### 文章信息

ZHENG Xinhua, XIE Lili, REN Junxue

Stability analysis and optimization for pneumatic cabin pressure regulating system

Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(1): 87-93.
http://dx.doi.org/10.13700/j.bh.1001-5965.2015.0020