文章快速检索 高级检索

1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
2. 北京航空航天大学 飞行器控制一体化技术重点实验室, 北京 100191

Three-dimensional rolling path planning via dynamic fluid disturbance
YAO Peng1,2, WANG Honglun1,2 , LIU Chang1,2
1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. Science and Technology on Aircraft Control Laboratory, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract: Considering the existence of moving target, moving threat and emergent threat in complex environment, the method of dynamic fluid disturbance and the rolling optimization strategy were combined for the three-dimensional dynamic path planning of unmanned aerial vehicle (UAV). Based on the motion information of moving target and threat, the relative initial fluid was constructed. Then, the influence of obstacles or threats on the relative initial fluid was quantized by the disturbance matrix. The relative modified flow was then obtained by modulation. Then the actual streamline which was the planning path, was easily accomplished. By fully utilizing the real-time environmental information and considering the motion in the future, the method of dynamic fluid disturbance was utilized to plan local path in limited time-domain. And the objective function was built and the reactive parameter was obtained by rolling optimization to realize the online path planning. Finally, the effectiveness of the method in complex dynamic environment is indicated.
Key words: unmanned aerial vehicle (UAV)     three-dimensional dynamic path planning     complex environment     dynamic fluid disturbance     rolling optimization
﻿

1 动态航路规划问题描述

2 静态环境下的流体扰动算法

 图 1 流体扰动示意图 Fig. 1 Schematic of disturbance of flow

2.1 初始流场

2.2 扰动流场

2.3 扰动流场分析

3 动态流体扰动算法

3.1 相对初始流场

3.2 相对扰动流场

4 反应系数滚动优化策略

L(k)不仅要考虑未来N步航路的长度,还要考虑该N步航路之后的航路总长度:

5 仿真与分析

5.1 静态环境下的航路规划

 图 2 静态环境下的无人机航路 Fig. 2 Path of UAV in static environment
5.2 无障碍或威胁时跟踪运动目标的航路规划

 图 3 无障碍情况下的无人机航路与移动目标路径 Fig. 3 Paths of UAV and moving target without obstacles
5.3 目标静止情况下躲避运动威胁的航路规划

 图 4 目标静止时的无人机航路与运动威胁轨迹 Fig. 4 Paths of UAV and moving threat with static target
5.4 复杂环境下的动态航路规划

 图 5 复杂动态环境下的无人机航路 Fig. 5 Path of UAV in complex dynamic environment
6 结 论

1) 静态环境下,流体扰动算法生成的流线即无人机规划航路,符合流水避石现象的一般特性:流线平滑地躲避各种障碍物,并最终到达目标点.

2) 动态流体扰动方法可等效为相对流场下的静态流体扰动算法,因此算法仍具有全局收敛性与稳定性,且适用于动态环境下的无人机多种飞行任务.

3) 考虑到最优性与可飞性要求,利用滚动优化思想,通过优化流体扰动算法中的反应系数,最终可得到满足无人机约束的次优可飞航路.

4) 通过理论分析与实验验证,表明该算法的完备性、有效性与实时性,具有一定的应用价值.

 [1] 柳长安.无人机航路规划方法研究[D].西安:西北工业大学,2003. Liu C A.Study on UAV path planning method[D].Xi'an:Northwestern Polytechnical University,2003(in Chinese). Cited By in Cnki (88) [2] Chen M,Wu Q X,Jiang C S.A modified ant optimization algorithm for path planning of UCAV[J].Applied Soft Computing,2008,8(4):1712-1718. Click browse the original [3] 武善杰,郑征,蔡开元.基于行为协同和虚拟目标相结合的无人机实时航路规划[J].控制理论与应用,2011,28(1):131-136. Wu S J,Zheng Z,Cai K Y.Real-time path planning for unmanned aerial vehicles using behavior coordination and virtual goal[J].Control Theory & Applications,2011,28(1):131-136(in Chinese). Cited By in Cnki (12) | Click to display the text [4] Ragi S,Chong E K P.Dynamic UAV path planning for multitarget tracking[C]//2012 American Control Conference.Piscataway,NJ:IEEE Press,2012:3845-3850. [5] Ge S S,Cui Y J.Dynamic motion planning for mobile robots using potential field method[J].Autonomous Robots,2002,13(3):207-222. Click browse the original [6] 任佳,高晓光,张艳.移动威胁情况下的无人机路径规划[J].控制理论与应用,2010,27(5):641-647. Ren J,Gao X G,Zhang Y.Path planning based on model predictive control algorithm under moving threat[J].Control Theory & Applications,2010,27(5):641-647(in Chinese). Cited By in Cnki (11) | Click to display the text [7] 张纯刚.基于滚动窗口的移动机器人路径规划[J].系统工程与电子技术,2002,24(6):63-69. Zhang C G.Mobile robot path planning based on rolling windows[J].Systems Engineering and Electronics,2002,24(6):63-69(in Chinese). Cited By in Cnki (0) | Click to display the text [8] Sullivan J,Waydo S,Campbell M.Using stream functions for complex behavior and path generation[C]//AIAA Guidance,Navigation and Control Conference and Exhibit.Reston:AIAA,2003:1-9. [9] 梁宵,王宏伦,曹梦磊,等.无人机复杂环境中跟踪运动目标的实时航路规划[J].北京航空航天大学学报,2012,38(9):1129-1133. Liang X,Wang H L,Cao M L,et al.Real-time path planning to track moving target in complex environments for UAV[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(9):1129-1133(in Chinese). Cited By in Cnki (8) | Click to display the text [10] 梁宵,王宏伦,李大伟,等.基于流水避石原理的无人机三维航路规划算法[J].航空学报,2013,34(7):1670-1681. Liang X,Wang H L,Li D W,et al.Three-dimensional path planning for unmanned aerial vehicles based on principles of stream avoiding obstacles[J].Acta Aeronautica et Astronautica Sinica,2013,34(7):1670-1681(in Chinese). Cited By in Cnki | Click to display the text [11] Wang H L,Lyu W T,Yao P,et al.Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system[J].Chinese Journal of Aeronautics,2015,28(1):229-239. Click browse the original [12] Yao P,Wang H L,Liu C.3-D dynamic path planning for UAV based on interfered fluid flow[C]//2014 IEEE Chinese Guidance,Navigation and Control Conference.Piscataway,NJ:IEEE Press,2014:997-1002. [13] 王建东,王亚飞,张晶.基于卡尔曼滤波器的运动目标跟踪算法[J].数字通信,2009(6):53-57. Wang J D,Wang Y F,Zhang J.Moving objects tracking algorithm based on Kalman filter[J].Digital Communication,2009(6):53-57(in Chinese). Cited By in Cnki (25) | Click to display the text [14] Khansari-Zadeh S M,Billard A.Realtime avoidance of fast moving objects:A dynamical system-based approach[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,NJ:IEEE Press,2012:121-126. [15] 周锐,成晓静,陈宗基.战术任务规划系统研究[J].控制与决策,2004,19(4):441-447. Zhou R,Cheng X J,Chen Z J.Tactical mission planning systems for modern fighter plane[J].Control and Decision,2004,19(4):441-447(in Chinese). Cited By in Cnki (28) | Click to display the text

#### 文章信息

YAO Peng, WANG Honglun, LIU Chang

Three-dimensional rolling path planning via dynamic fluid disturbance

Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(12): 2280-2287.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0773