文章快速检索 高级检索

1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
2. 北京航天自动控制研究所, 北京 100854

Optimization design of approach and landing trajectory for variable configuration RLV with multi-control surfaces
HAO Xianwei1, WANG Yong1 , YANG Ye2, GUO Tao2
1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. Beijing Aerospace Automatic Control Institute, Beijing 100854, China
Abstract: To solve approach and landing problem of variable configuration reusable launch vehicle (RLV) with multi-control surfaces, a design method of approach and landing trajectory was proposed. The landing trajectory was divided into steep glide landing trajectory and flare landing trajectory. The controllable deflection limit of the aerodynamic surfaces and deep downturn quasi equilibrium equation constraints were considered and the steep glide landing trajectory optimization design was carried out. The RLV aerodynamic surface adjusting redundancy and variable configuration processes were considered, with constraint conditions of the gear down time, the flare normal overload and the grounding state, by the trajectory propagation based on the RLV dynamics equation, the optimal flare landing trajectory was designed and optimized. The steep glide landing trajectory and flare landing trajectory composed a complete approach and landing trajectory. Therefore, the designed approach and landing trajectory considered multi constraint conditions and improved the stability and safety of the landing process.
Key words: reusable launch vehicle     landing gear     multi-control surfaces     trajectory propagation     approach and landing trajectory
﻿

1 进场着陆轨迹

RLV进场着陆轨迹由深下滑段着陆轨迹和拉平段着陆轨迹组成,其中深下滑段着陆轨迹是一条斜直线,拉平段着陆轨迹是由3条平滑连接的曲线组成,分别为圆弧拉起轨迹、指数拉起轨迹和浅下滑轨迹,着陆轨迹如图 1所示.在深下滑段RLV以固定的轨迹倾角保持恒定的动压,拟平衡下滑飞行.为了使RLV接地升降速度较小,RLV接地时需有较小的轨迹倾角.圆弧拉起段的作用是逐渐减小轨迹倾角,使深下滑段较大的轨迹倾角过渡到浅下滑段较小的轨迹倾角.为避免圆弧拉起段过渡到浅下滑段时引起法向加速度突跳,引入指数拉起段,以使法向加速度平稳过渡到浅下滑段[3].

 图 1 RLV进场着陆轨迹 Fig. 1 RLV approach and landing trajectory

2 RLV多操纵面配置与控制

RLV进场着陆,无动力为其特点,通过操纵相关舵面实现着陆飞行.RLV一般具有多操纵面,包括左右V尾、左右副翼、阻力板和体襟翼,如图 2所示.

 图 2 RLV气动外形 Fig. 2 RLV aerodynamic configuration

RLV进场着陆过程中,通过控制升降舵偏转,改变迎角,从而改变升力,实现高度跟踪控制;通过阻力板(δsb)偏转来改变飞行器阻力,实现速度控制.

3 深下滑着陆轨迹

3.1 深下滑拟平衡方程

 图 3 深下滑段RLV受力分析 Fig. 3 Force analysis for RLV in steep-glide phase

RLV以固定的动压q直线下滑,则RLV满足以下关系:

RLV在下滑过程中纵向合力矩为0,则

3.2 深下滑着陆轨迹优化设计

4 拉平着陆轨迹 4.1 拉平着陆轨迹生成

4.2 拉平着陆轨迹推演

θ=θ3

θ′=0

RLV沿拉平着陆轨迹的飞行时间为

 图 4 拉平着陆轨迹推演过程 Fig. 4 Process of flare landing trajectory propagation
4.3 拉平着陆轨迹优化设计

5 算 例

 图 5 进场着陆轨迹 Fig. 5 Approach and landing trajectory

 图 6 RLV进场着陆响应曲线 Fig. 6 Response curves of approach and landing for RLV

6 结 论

1) 大的气动舵面调节余量有助于提高着陆过程飞行器对气动参数误差的适应能力,以及抵抗风干扰的控制能力.

2) 对起落架放下时间的限制,确保RLV接地前起落架释放到位.

3) 限制最大法向过载有利于提高RLV进场着陆的平稳性.

4) 考虑起落架角度及各气动舵面偏角的变化过程,使所设计的轨迹更符合实际情况.

 [1] Khapane P D.Simulation of asymmetric landing and typical ground maneuvers for large transport aircraft[J].Aerospace Science and Technology,2003,7(8):611-619 Click to display the text [2] Khapane P D.Gear walk instability studies using flexible multibody dynamics simulation methods in SIMPACK[J].Aerospace Science and Technology,2006,10(1):19-25 Click to display the text [3] Barton G H,Tragesser S G.Autolanding trajectory design for X-34[C]// AIAA Atmospheric Flight Conference and Exhibit.Reston:AIAA,1999:15-30 Click to display the text [4] Hanson J M,Jones R E.Test results for entry guidance methods for space vehicles[J].Journal of Guidance,Control,and Dynamics,2004,27(6):960-966 Click to display the text [5] Hanson J M.A plan for advanced guidance and control technology for 2nd generation reusable launch vehicles[C]//AIAA Guidance,Navigation and Control Conference and Exhibit.Reston:AIAA,2002:1-9 Click to display the text [6] Kluever C A,Horneman K R.Terminal trajectory planning and optimization for an unpowered reusable launch vehicle[C]// AIAA Guidance,Navigation and Control Conference and Exhibit. Reston:AIAA,2005:1-23 Click to display the text [7] Kluever C A.Unpowered approach and landing guidance with normal acceleration limitations[J].Journal of Guidance,Control,and Dynamics,2007,30(3):882-885 Click to display the text [8] 杨帆,张曙光.某RLV飞行器投放轨迹的设计与分析[J].北京航空航天大学学报,2005,31(8):843-847. Yang F,Zhang S G.Design and analysis on dropping trajectories of RLV configuration[J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(8):843-847(in Chinese) Cited By in Cnki (5) | Click to display the text [9] 王宏伦,裴云峰,倪少波,等.飞行器无动力应急着陆域和着陆轨迹设计[J].航空学报,2014,35(5):1404-1415. Wang H L,Pei Y F,Ni S B,et al.Design of emergency landing reglon and landing trajectory for unpowered aircraft[J].Acta Aeronautica et Astronautica Sinica,2014,35(5):1404-1415(in Chinese) Cited By in Cnki (3) | Click to display the text [10] Das K,Purlupady C,Padhi R,et al.Optimal nonlinear control and estimation for a reusable launch vehicle during reentry phase[C]// Proceedings of 16th Mediterranean Conference on Control and Automation.Piscataway,NJ:IEEE Press,2008:47-52 Click to display the text [11] Song Y D.Guaranteed performance control of nonlinear systems with application to flexible space structures[J].AIAA Journal of Guidance,Control and Dynamics,1995,18(1):143-150 Click to display the text [12] Jiang Z S,Raul O.Trajectory generation on approach and landing for RLVs using motion primitives and neighboring optimal control[C]// Proceedings of 2007 American Control Conference.Piscataway,NJ:IEEE Press,2007:1091-1096 Click to display the text [13] Tsikalas G M.Space shuttle autoland design[C]// AIAA Guidance,Navigation and Control Conference and Exhibit.Reston:AIAA,1982,AIAA-1982-1604-CP:1-14. [14] Walyus K D,Dalton C.Approach and landing simulator for space shuttle orbiter touchdown conditions[J].Journal of Spacecraft and Rockets,1991,28(4):478-485 Click to display the text [15] Kluever C A.Unpowered approach and landing guidance using trajectory planning[J].Journal of Guidance,Control,and Dynamics,2004,27(6):967-974 Click to display the text

#### 文章信息

HAO Xianwei, WANG Yong, YANG Ye, GUO Tao

Optimization design of approach and landing trajectory for variable configuration RLV with multi-control surfaces

Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(12): 2232-2239.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0822