文章快速检索 高级检索

Parametric finite element meshing and adjustment for delta wing
XU Menghui, QIU Zhiping
School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract: To reduce the time of finite element (FE) modeling for a delta wing as well as improve the efficiency of structural analysis, design and optimization, a method, with the only input of its geometry profile meeting the pre-defined aerodynamic performance, for parametric modeling based on the self-defined geometrical matrix was established. Number rules for nodes and elements were firstly defined. And preliminary identification of the inner skeleton configuration with respect to arbitrary input parameters was subsequently accomplished by the criteria for rib-end locations. Nodes and elements were then generated by user-input parameters for the finite element size. Secondly the FE meshing was refined by the opening setting, amendment of rib-end locations and stringers modeling, based on which modifications of rib assignment with small amplitude for both the inside and outside ailerons as well as those of the rotation angle for control surfaces were made for ease in use of structural analysis under different flying conditions. At last, a parametric modeling module was simultaneously programmed using Patran command language (PCL) language and examples illustrate the effectiveness and reliability of the proposed method.
Key words: delta wing     parametric modeling     finite element model     Patran command language (PCL) language     redevelopment

MSC.Patran是国际航空航天器结构分析领域的基准软件,也是工业领域内著名的并行框架式有限元前后处理及分析仿真系统.用户可利用其强大的PCL(Patran Command Language)语言[6, 7, 8, 9, 10, 11, 12, 13, 14]和编程函数库将自行开发的应用程序、功能及应特殊要求开发的内容直接嵌入MSC.Patran的框架系统,或单独使用或与其他系统联合使用.本文以其为平台引入三角翼结构的参数化有限元网格快速建立与调整方法,提高结构分析、设计与优化效率.

1 三角翼及其预处理

 图 1 三角翼示意图Fig. 1 Sketch of a delta wing

 图 2 修正原理图Fig. 2 Principle of amendment

 图 3 气动外形示意图Fig. 3 Sketch of aerodynamic configuration

 区域编号 参数类型
P11
 基本外形参数 翼梁/纵墙的位置及数目 翼肋的位置及数目 桁条的位置及数目
 P12 基本外形参数 P13 斜翼肋的数目
P2
 前缘襟翼的位置参数 斜翼肋的数目
P3
 内侧副翼的位置参数 翼肋的位置与数目
P4
 外侧副翼的位置参数 翼肋的位置及数目
 无 左右机翼的间距
2 参数化网格划分

2.1 节点编号定义

 图 4 左侧机翼ab梁腹板的节点编号Fig. 4 Numbers of nodes on web of beam ab of left wing
2.2 单元编号定义

1) 壳单元:蒙皮取值为0,梁/墙腹板取值为1,肋腹板取值为2,斜肋(位于区域P13P2)腹板取值为3.

2) 杆单元:梁/墙/缘条与桁条取值为4,肋缘条取值为5,斜肋缘条取值为6.

2.3 网格划分 2.3.1 骨架布局的确定

 图 5 肋端点位置图Fig. 5 Sketch of rib end locations

2.3.2 节点布置的确定

 图 6 骨架结构的中面投影单位分区形状Fig. 6 Shapes of unit region of projections of skeleton components on middle plane

 图 7 形状矩阵与单位分区的关系Fig. 7 Relationships between geometrical matrix and unit regionsc

2.3.3 有限元网格划分

2.3.4 有限元网格细化

3 参数化网格调整

3.1 位置调整

3.2 角度调整

4 实 例

 图 8 参数化网格划分模块Fig. 8 Parametric meshing module
4.1 有限元网格划分

 图 9 情形1和情形2下的机翼有限元网格Fig. 9 Finite element (FE) meshing of wing in Case 1 and Case 2
 图 10 情形1和情形2下的骨架有限元网格Fig. 10 FE meshing of skeleton in Case 1 and Case 2

 图 11 细化的骨架有限元网格Fig. 11 Refined FE meshing of skeleton

 图 12 自动分组结果Fig. 12 Consequences of auto-group
4.2 有限元网格调整

 图 13 副翼的肋位置调整Fig. 13 Location modifications of ribs of aileron

 图 14 舵面的角度调整Fig. 14 Angle modifications of control surfaces
5 结 论

1) 本文所定义有限元节点与单元的编号规则协调统一实用,便于实现节点和单元的后续操作,如开口设置等.

2) 所引入之翼肋贯穿截止准则简便,综合网格细化方法,满足任意输入参数下机翼内部构型的判断与修正.

3) 所定义之形状矩阵M有效简化了有限元节点布置、单元生成及不同单位分区间单元连接,对不同形式的单位分区具有普遍适用性.

4) 活动多面的角度调整功能有利于开展不同飞行状态下的结构分析等;但限于所输入之几何气动外形,内外侧副翼的翼肋位置调整适用于小幅调整.

5) 由于平直机翼气动外形相对规则,本文方法适用于平直机翼的有限元参数化网格划分与调整.

 [1] Roberts R W,Canfield R A,Blair M.Sensor-craft structural optimization and analytical certification,AIAA-2003-1458[R].Reston:AIAA,2003. Click to display the text [2] Mike R.MD Nastran 2006 DMAP programmer's guide[M].Spmta Ana:MSC Software Corporation,2005:xii-xiv. [3] Hermann T M,Mamarthupatti D,Locke J E.Postbuckling analysis of laminate composites utilizing commercial FEA software,AIAA-2005-0194[R].Reston:AIAA,2005. Click to display the text [4] 金海波,丁运亮.飞机概念设计中的外形参数化模型的研究[J].南京航空航天大学学报,2003,35(5):540-544.Jin H B,Ding Y L.Parameterization model for aircraft concept design[J].Journal of Nanjing University of Aeronautics and Astronautics,2003,35(5):540-544(in Chinese). Cited By in Cnki (25) [5] 白振东,刘虎,武哲.低可探测机身参数化造型与优化[J].北京航空航天大学学报,2007,33(12):1391-1394.Bai Z D,Liu H,Wu Z.Parametric modeling and optimization of low observability fuselage in aircraft conceptual design[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(12):1391-1394(in Chinese). Cited By in Cnki (9) [6] 罗明强,冯昊成,刘虎,等.民用飞机机翼结构快速设计及自动化调整[J].北京航空航天大学学报,2009,35(4):468-471.Luo M Q,Feng H C,Liu H,et al.Rapid wing structure design and automated scheme adjustment for civil aircraft[J].Journal of Beijing University of Aeronautics and Astronauctics,2009,35(4):468-471(in Chinese). Cited By in Cnki (16) [7] 罗明强,冯昊成,刘虎,等.机翼结构有限元的快速建模及自动化调整[J].北京航空航天大学学报,2011,37(6):680-684.Luo M Q,Feng H C,Liu H,et al.Rapid wing structural finite element modeling and automated adjustment[J].Journal of Beijing University of Aeronautics and Astronautics,2011,37(6):680-684(in Chinese). Cited By in Cnki (3) [8] 舒恪晟,金海波,姜琬.基于Patran二次开发的机身结构参数化建模[J].飞机设计,2011,31(2):30-32.Shu K S,Jin H B,Jiang W.Fuselage structure parametric modeling based on secondary development of Patran[J].Aircraft Design,2011,31(2):30-32(in Chinese). Cited By in Cnki (2) [9] 许林,郭中全,陈小前,等.基于PCL的高超飞行器结构参数化建模[J].计算机工程,2008,34(22):1-3.Xu L,Guo Z Q,Chen X Q,et al.Parametric modeling for hyper sonic vehicle structure based on PCL[J].Computer Engineering,2008,34(22):1-3(in Chinese). Cited By in Cnki (6) [10] 何祖平,王德禹.基于MSC.Patran二次开发的结构参数化建模及其集成开发环境[J].航海工程,2005(2):17-20.He Z P,Wang D Y.Parameterized modeling based on MSC.Patran and its integrated development environment[J].Ship & Ocean Engineering,2005(2):17-20(in Chinese). Cited By in Cnki (50) [11] 陈博,陈秀华,汪海.MSC.Patran二次开发及其集成开发环境[J].机械设计与制造,2007(7):71-73.Chen B,Chen X H,Wang H.Redevelopment of MSC.Patran and its integrated development environment[J].Machinery Design & Manufacture,2007(7):71-73(in Chinese). Cited By in Cnki (19) [12] 匡国强,张晓晶.基于MSC Patran参数化建模的飞艇蒙皮织物面内刚度预测[J].计算机辅助工程,2009,18(3):42-45.Kuang G Q,Zhang X J.In-plane stiffness prediction on fabric of airship envelop based on parameterized modeling of MSC Patran[J].Computer Aided Engineering,2009,18(3):42-45(in Chinese). Cited By in Cnki (4) [13] 刘斌,韩庆,钟小平.基于MSC.PCL的飞机结构稳定性系统开发[J].科学技术与工程,2010,10(28):7082-7088.Liu B,Han Q,Zhong X P.Development of aircraft structure's stability system based on MSC.PCL[J].Science Technology and Engineering,2010,10(28):7082-7088(in Chinese). Cited By in Cnki (3) [14] MSC.Patran PCL reference manual[Z].2007. [15] 叶天麟,周天孝.航空结构有限元分析指南[M].北京:航空工业出版社,1996:514-515.Ye T L,Zhou T X.Guide for finite element analysis of aerospace structures[M].Beijing:Aviation Industry Press,1996:514-515(in Chinese).

#### 文章信息

XU Menghui, QIU Zhiping

Parametric finite element meshing and adjustment for delta wing

Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(9): 1659-1665.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0641