文章快速检索  
  高级检索
力约束管材自由胀形试验研究与材料性能测试
程鹏志1, 郎利辉1, 葛宇龙1, 阮尚文1, 王韬2, 武海2    
1. 北京航空航天大学 机械工程及自动化学院, 北京 100191;
2. 上海汇众汽车制造有限公司, 上海 200122
摘要:相较于单向拉伸试验,通过管材胀形试验(TBT,Tube Bulging Test)获得的材料性能参数能够更准确地反映材料在高压流体作用下的塑性成形性能,不同的管端边界将会严重影响管材胀形试验的测试结果.针对国际上现有试验方法和设备存在的不足,研制出了一套约束边界清晰、加载精确的管材自由胀形试验系统.在管材测试过程中,基于位移随动力主动加载的控制策略和比例伺服油缸,实现实时的轴向力、轴向位移和内压力的精确加载.端部约束的测试管材通过特殊设计的工装保证了其轴向自由滑动.实时内压力和胀形管材顶点处材料的壁厚和胀形高度信息通过超高压压力传感器、超声测厚仪和磁致伸缩位移传感器采集,进而基于Swift材料本构模型和采集到的数据拟合出材料应力应变曲线和材料性能参数.试验结果表明,管材两端侧推力与内压力对管材内腔端面的作用力和管材轴向自由对称收缩的平衡条件始终处于动态稳定中,试验设备能够准确获得实时胀形高度、顶点厚度、轴向收缩长度和内压力的信息,能够为材料性能测试和工艺设计提供可信的材料参数.
关键词充液成形     胀形试验     管端边界     自由滑动     轴向力     内压力     胀形高度     材料参数    
Tube free bulging experiment with force-end and material properties testing
CHENG Pengzhi1, LANG Lihui1 , GE Yulong1, RUAN Shangwen1, WANG Tao2, WU Hai2     
1. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. Shanghai Huizhong Automotive Manufacturing Co., Ltd, Shanghai 200122, China
Abstract:Compared with uniaxial tension, the material property parameters obtained by tube bulging test (TBT) can accurately reflect the plastic forming properties of materials under high-pressure fluid condition. Different end-conditions will seriously affect the experiment results of TBT. According to the defects of existed experimental method and equipment internationally, a special TBT system, with accurate boundary conditions and loading units, was successfully designed and developed. The axial force, axial displacement, and the internal pressure are the key points of the system which could be accurately controlled in real-time bycontrol strategy of displacement under dynamic active loading state and proportional servo valves. The free sliding of fixed tube ends was implemented by a special designed fixture. During the experimental process, the real-time thickness and bulging height in the pole, and the real-time internal pressure were monitored by the ultrasonic thickness gauge, the magnetostrictive displacement sensor and the ultra-high pressure sensor. The stress-strain curve and material properties were derived by the Swift material constitutive model and the monitor data. The experimental data demonstrate that the two load balance conditions, which are the balance of two axial forces with internal pressure and the balance of two axial contractive displacements, are always satisfied during all the test process. The test data processing results show that the monitor data have good repeatability and can be used to get the material properties.
Key words: tube hydroforming     bulging test     end-condition     free sliding     axial force     internal pressure     bulging height     material properties    

管材充液成形技术(tube hydroforming)是指管材在内部液压力和轴向推力作用下充满模具型腔并贴模,进而成形具有一定复杂型面的空心薄壁零件高压柔性成形工艺,也被称为内高压成形或液压成形工艺,鉴于其特别适用于成形整体、复杂、薄壁的空心零件,及其成形精度高、材料利用率高、生产成本低的特点,该技术在21世纪初得到了快速发展,并开始广泛应用于航空航天、汽车制造等产业[1, 2, 3].随着工艺应用的发展,研究人员发现由于高压均匀面力等因素的作用,原始板材单向拉伸试验获得的材料性能参数不能很好地适用于管材充液成形工艺分析,实际生产对材料准确度的要求也越来越高,目前管材充液成形性能测试方法和装置尚不够完善和统一[4, 5, 6, 7, 8].需要采用更为准确、可靠的胀形方法获得材料性能数据.He等通过比较现有的解析模型,针对AA6061材料建立了基于不同边界条件的管材胀形统一解析模型,认为胀形轮廓为椭圆,并考虑了模具圆角的影响[7, 8].Velasco和Zribi等通过有限元模拟和试验研究了材料性能参数对管材胀形过程中材料分布和胀形轮廓的影响[9, 10];Imaninejad等采用挤出铝管材对充液胀形中不同的管端约束条件及对管材应变状态的影响进行了试验研究,并对试验中的摩擦力进行了定性分析和定量测量.试验结果表明,不同的管端约束和摩擦状态对材料变形有非常大的影响,以至于可以得到成形极限图上大范围内的点,材料厚向异性指数与管材的轴向收缩量呈显著正相关[11, 12].

现有的管材胀形试验方法通常采用模具将管材两端完全固定,边界条件清晰,但不能监控材料的轴向收缩量,因而无法得到反映材料厚向异性指数.另外,管端固定的边界导致管材胀形时管材顶点处轴向应力分量很大,不能很好地反映材料径向性能,因而与材料单向拉伸试验数据相差很大.当采用放开管端轴向自由度的试验方法时,往往由于管材的收缩导致侧推冲头与管材间的过盈密封状态不良,过度推料又容易对管材两端施加推力而影响试验结果,摩擦状态随着胀形压力和侧推冲头的作用而急剧变化,试验干扰因素非常多.管材胀形实时厚度的测量问题一直没有解决,间接理论推导导致误差增大.

本文根据大量工程经验,针对现有TBT(Tube Bulging Test)方法存在的不足之处,提出了一种基于轴向自由胀形的管材充液成形性能测试试验方法及装置,建立了与之对应的理论解析模型,以获得实时胀形高度、轴向收缩量和壁厚变化等数据,进而获得应力应变曲线和材料性能参数.试验管材受力边界简单、清晰,摩擦干扰误差小,易于检测、采集和处理数据.

1 试验原理与系统设计 1.1 试验原理

力约束管材自由胀形试验方法原理如图 1所示,将试验管材的两端完全刚性约束,仅放开其轴向移动的自由度,在管材内部施加均匀液压力p,同时在管材左右两端分别通过伺服侧推油缸施加推力F1,F2,并满足下式:

式中,Fp为内压力p对管材内腔端面Ain的作用力;Ain为试验管材的管端内腔截面积;k1,k2为加载系数;S1,S2为左右两侧伺服油缸上安装的左侧位移传感器和右侧位移传感器的位移反馈值.内压力p均匀上升直至管材破裂过程中保持前述关系不变,同时通过超声测厚仪及探头、胀形高度位移传感器实时监控管材胀形顶点的实时壁厚t和胀形高度h.当k1=k2=1时,侧推力F1,F2正好抵消内压力p对管材内腔端面Ain的作用力Fp,通过获得的胀形过程数据p,t,h即可按照塑性理论推导出试验管材的轴向自由胀形应力应变曲线及材料参数.此种工况下,试验管材仅受到内压力p对管腔内壁的法向作用和管端节点的径向约束,同时保持胀形最高点轴向不窜动,而不受任何他它外力、约束或摩擦的影响.
A—左侧位移传感器; D—超声测厚仪及探头; E—胀形高度位移传感器; I—右侧位移传感器.图 1 力约束管材自由胀形试验原理Fig. 1 Principle diagram of TBT system

1.2 试验系统组成

图 2所示,试验系统分为控制系统、液压系统、水系统、增压器和试验工装5部分.液压系统工作介质为液压油,水系统工作介质为乳化液,增压器为液压力转换和放大装置.控制系统同时监测并记录左侧位移传感器、左侧油缸无杆腔压力传感器、左侧油缸有杆腔压力传感器、超声测厚仪及探头、胀形高度位移传感器、超高压压力传感器、右侧油缸有杆腔压力传感器、右侧油缸无杆腔压力传感器、右侧位移传感器9个传感器的实时数据.

A—左侧位移传感器;B—左侧油缸无杆腔压力传感器; C—左侧油缸有杆腔压力传感器;D—超声测厚仪及探头; E—胀形高度位移传感器;F—超高压压力传感器; G—右侧油缸有杆腔压力传感器; H—右侧油缸无杆腔压力传感器;I—右侧位移传感器; J—控制系统;K—液压系统; L—水系统;M—增压器;N—试验工装. 图 2 试验系统组成 Fig. 2 Composition of TBT system

2 关键技术实现与验证 2.1 管端约束、高压密封与导向结构

图 3所示,试验管材两端的约束和高压密封由左推杆、试验管材、对开螺母卡套部件、右推杆、超高压水管、高压密封圈6部分组成.对开螺母卡套部件包括卡套、内螺纹圆柱销、对开螺母.对开螺母上下瓣和卡套通过内螺纹圆柱销连接为一整体,并可反复拆装.左、右推杆与对开螺母卡套部件采用螺纹连接,并可反复拆卸,试验管材经过扩口的两端被左、右推杆和对开螺母卡套部件夹紧在中间,通过螺纹实现预紧.超高压水管通过螺纹连接在右推杆上,并可通过右推杆上的高压水通道向试验管材内注入高压液体.卡套可以在左右两侧上压半圆形导套和下支撑半圆形导套组成的圆形导向结构内沿轴向自由窜动,配合界面采用大间隙配合,并涂油润滑,左右两侧的下支撑半圆形导套通过螺栓固定在底板上,并通过导向键保证同轴度,从而保证了管材沿轴向的自由移动.

1—左推杆;2—底板;3—上压半圆形导套;4—下支撑半圆形导套;5—试验管材;6—高压密封圈;7—卡套;8—内螺纹圆柱销;9—对开螺母;10—右推杆;11—高压水通道;12—超高压水管. 图 3 试验工装 Fig. 3 Tool set

2.2 侧推位移与力的比例伺服控制策略

对于比例伺服控制实现式(1)要求的力平衡条件仅需要对两侧伺服油缸进行力控制,当管材收缩时侧推油缸跟随运动.但通过试验发现管材因胀形而收缩过程中两侧伺服油缸的位移是不稳定的,由于系统的不完全对称会导致管材偏移.为了便于超声测厚仪稳定采集实时厚度数据,就需要对侧推油缸的位移进行控制,以确保管材顶点始终处于中间位置.经过反复试验发现,精确控制左侧伺服油缸压力和右侧伺服油缸位移,左侧伺服油缸位移传感器采集的位移数据作为右侧伺服油缸位移控制数据,这种控制策略能够同时保证侧推力和侧推位移的对称,并且侧推油缸的位移量体现的是管材胀形的自由收缩量.

图 4所示,试验采集的数据表明了上述控制策略的有效性,在管材胀形至破裂的过程中,式(1)和式(2)所描述的试验平衡状态始终处于动态稳定中.

图 4 轴向力与位移曲线Fig. 4 Force and displacement curve

2.3 关键技术特征

根据管端约束条件不同,传统的管材胀形试验方法分为管端固定、管端力加载和管端自由胀形[11].相较于现有试验方法,本文所描述的管材自由胀形试验方法具有如下特征:①在胀形试验之前,管材两端通过翻边模具进行扩口,对开螺母卡套部件将管材的翻边特征完全约束,因而阻滞了管材夹持段的材料向胀形区的流动,保证了管材变形区材料长度的一致性.②由于管材两端的翻边特征完全被对开螺母卡套部件夹持,现有试验方法中管材与夹持模具之间的相对运动边界被转换到了对开螺母卡套部件与导套之间,原有的剧烈摩擦边界被间隙滑动配合所代替,因而在施加大的轴向力之前管材可以在导套内自由滑动.在胀形阶段,夹持段管材的变形很小,对开螺母卡套部件与导套之间的滑动间隙仍旧稳定,滑动摩擦力很小,因而管材可以自由收缩.③除了轴向移动的自由度,管材两端节点的其他自由度被完全约束,加上良好的滑动配合,伺服油缸提供的轴向力加载精确地作用在管材两端.由于翻边特征的特殊固定方式,轴向拉力也可以施加在管材上,这为研究管材在双拉状态下的变形行为提供了非常好的试验条件.

3 试验条件 3.1 试验材料

试验管材材料为QSTE340 TM高频焊管,长度210 mm(含管材两端夹持段长度各32.5 mm),外径D0=72.5 mm,长径比L0/D0=2.0,变形区长度L0=145 mm,实测原始壁厚t0=3.665 mm.单向拉伸试验测得的屈服强度σs=400 MPa,抗拉强度σb=450 MPa,延伸率≥25%.试验前,在管材表面印上直径2.5 mm的圆形网格,用于测量管材破裂后的面内应变.

3.2 试验设备

试验设备为北京航空航天大学飞行器制造工程实验室为完成本试验自主研发的FTBT试验机,如图 5所示.设备最大胀形力250 MPa,压力控制精度0.5 MPa,侧推力0~30 t,位移控制精度0.2 mm.

图 5 FTBT管材自由胀形试验机Fig. 5 Free-end tube bulging test machine

4 试验数据采集与分析 4.1 数据采集

试验采用PD-T1精密型超声波测厚仪测量胀形零件顶点厚度t,Novotechnik TMI系列位移传感器测得胀形高度h,及左右油缸的位移S1,S2,KAVLICO PTE5000系列压力传感器测得胀形压力p.控制系统每秒钟输出2组数据,增压时间20 s,系统输出的顶点壁厚、胀形高度和压力曲线如图 6所示.

图 6 试验数据采集曲线Fig. 6 Experimental data

4.2 理论解析模型

图 7所示,力约束管材自由胀形试验中,在式(1)和式(2)满足的情况下,管材仅受到内压力p的作用,轴向推力F1,F2和内压力p对管材内腔端面Ain的作用力Fp相互抵消.

图 7 力约束管材自由胀形受力平衡示意图Fig. 7 Force equilibrium diagram of free-bulging

根据前述边界条件和几何关系,列出下列平衡方程[12, 13],可以得到胀形管材顶点的应力应变状态.同时需要做出如下假设:

1) 薄壁管成形,忽略管材厚向应力,但考虑内压力p的作用;

2) 管材胀形过程中,轴向剖面轮廓曲线始终为余弦曲线;

3) 塑性变形过程中,材料体积不变;

4) 忽略材料各向异性.

首先分析管材顶点的应力状态,在塑性变形阶段,管材轴向仅受到内压力p在管材轴向轮廓的投影,轴向应力可以通过下式得出:

式中,R0为管材原始半径,当管材长径比L0/D0=2.0时,端头效应的影响需要考虑在内,根据薄膜理论及静力平衡条件,此时有
式中,σθ为顶点的环向应力分量;σz为顶点的轴向应力分量;Rθ为顶点的环向曲率半径;Rz为顶点的轴向曲率半径;t为顶点的实时壁厚.

假设管材轴向剖面轮廓曲线为余弦曲线:

根据几何关系可得:

式中,有a=h,b=π/l,则

管材两端自由收缩量S1=S2通过图 4(b)可得,将式(3)、式(7)代入式(4)中即可推导出环向应力σθ.

管材顶点的真实厚向应变可以通过超声测厚仪采集的实时厚度t得出:

管材环向真实应变为

根据体积不变关系可得轴向应变:

平面应力状态下,根据Von Mises屈服准则推导出等效应力:

根据下式推导出等效应变:

4.3 数据处理与分析

图 4(b)和图 6采集的数据代入前述公式即可获得材料塑性阶段的应力分量(图 8(a))、应变分量(图 8(b)).采用式(13)所述的Swift材料本构拟合材料塑性阶段的等效应力应变曲线如图 8(c)所示.

图 8(a)所示的应力分量图,环向应力σθ远大于轴向应力σz,受力状态接近于单向拉伸,轴向力的抵消起到了很好的效果,测试结果能够很好地反映管材的环向成形性能.这个结果也是工艺设计所需要的,在实际工程应用中,管材充液成形零件的破裂主要发生在环向.

图 8 应力应变曲线及拟合Fig. 8 Fit of strain stress curve

图 8(b)所示的应变分量图反映了管材胀形过程中厚度逐渐减薄、环向逐渐拉长的过程,对应的轴向应变则经历了先压缩、后拉伸的过程,轴向力的抵消起到了明显的效果[14].在材料发生弹性变形和塑性变形的中前期阶段,胀形高度很低,内压力对管材轴向的作用很小,管材近似于仅受环向主应力的作用,引起明显的轴向和厚向收缩,因而该阶段的轴向应变为负值.该阶段的应力应变状态非常近似于单向拉伸试验,从图 8(b)中也可以看出在该阶段轴向应变与厚向应变近似相等,与单向拉伸试验类似定义该阶段的厚向异性指数r,则r近似为1.0.在胀形后期至破裂,由于胀形高度的增加,内压力对管材轴向的作用逐渐显著,材料应力状态向着双向拉伸快速转变,此时轴向应变趋势出现了明显的扭转上翘趋势,但最终轴向拉应力的作用还是远小于环向拉应力,因而轴向应变始终为负值.

进一步根据Swift材料本构拟合材料塑性阶段的等效应力-应变曲线如图 8(c)所示.拟合所得的塑性强度系数K=895.096,硬化指数n=0.202,初始应变ε0=0.003 29.与材料单向拉伸试验获得的数据相比,试验数据结果基本符合材料在高压流体作用下表现出的特性[15, 16].进一步的数据分析、数值模拟和试验工作需要继续完成,以便相互验证,为材料性能测试和工艺设计提供可靠手段和依据.

图 9所示的为国产未退火材料和进口退火两种材料进行多次测试的管材胀形高度与内压力关系曲线,图 4图 6中的数据均由进口退火材料测试获得.通过图 9可以看出试验系统具有较好的重复性,退火材料会有明显的屈服平台,而未退火材料可以获得更高的胀形高度.

图 9 胀形高度与内压力关系曲线Fig. 9 Bulging height vs internal pressure curve

5 结 论

1) 相对于国际上现有的管材胀形试验机,本文所描述的试验方法和设备解决了3个固有问题:①将实现管端约束的对开螺母卡套部件和密封组件附着在管材两端,从而保证了管材胀形过程中卡套与半圆形导套的滑动间隙,即保证了管端的自由滑动,排除摩擦干扰的同时准确获得了管材胀形时的轴向自由收缩数据;②鉴于翻边特征的良好试验效果,比例伺服油缸可以对管材两端施加精确的推力(或拉力),并能有效阻止管端被夹持材料向变形区的流动;③采用超声测厚仪实时采集管材顶点的厚度变化信息,直接准确测量推导出厚向应变.试验数据的采集具有较好的可重复性精度.

2) 在管材胀形过程中,环向应力σθ远大于轴向应力σz,受力状态接近于单向拉伸,轴向力的抵消起到了很好的效果,测试结果能够很好地反映管材的环向成形性能.

3) 胀形过程中发生弹性变形和塑性变形的中前期阶段,管材近似于仅受环向主应力的作用,引起明显的轴向和厚向收缩,该阶段的轴向应变为负值,轴向应变与厚向应变近似相等,对应单向拉伸试验可以看出厚向异性指数r近似为1.0.在胀形后期至破裂,材料应力状态向着双向拉伸快速转变,轴向应变趋势出现了明显的扭转上翘趋势,但轴向应变始终为负值.

参考文献
[1] Yuan S J, Liu G.3.04-Tube hydroforming (internal high-pressure forming)[J].Comprehensive Materials Processing,2014,3:55-80.
Click to display the text
[2] Ahmetoglu M, Altan T.Tube hydroforming:state-of-the-art and future trends[J].Journal of Materials Processing Technology,2000,98(1):25-33.
Click to display the text
[3] Lang L H, Wang Z R,Kang D C,et al.Hydroforming highlights:sheet hydroforming and tube hydroforming[J].Journal of Materials Processing Technology,2004,151(1):165-177.
Click to display the text
[4] Ouirane A H B, Boudeau N,Velasco R,et al.Error evaluation on experimental stress-strain curve obtained from tube bulging test[J].Thin-Walled Structures,2011,49(10):1217-1224.
Click to display the text
[5] Thiruvarudchelvan S, Seet G L,Ang H E.Computer-monitored hydraulic bulging of tubes[J].Journal of Materials Processing Technology,1996,57(1-2):182-188.
Click to display the text
[6] Yang L F, Guo C.A simple experimental tooling with internal pressure source used for evaluation of material formability in tube hydroforming[J].Journal of Materials Processing Technology,2006,180(1-3):310-317.
Click to display the text
[7] He Z B, Yuan S J,Lin Y L.Analytical model for tube hydro-bulging test,part I:models for stress components and bulging zone profile[J].International Journal of Mechanical Sciences,2014,87:297-306.
Click to display the text
[8] He Z B, Yuan S J,Lin Y L.Analytical model for tube hydro-bulging test,part II:linear model for pole thickness and its application[J].International Journal of Mechanical Sciences,2014,87:307-315.
Click to display the text
[9] Velasco R, Boudeau N.Tube bulging test:theoretical analysis and numerical validation[J].Journal of Materials Processing Technology,2008,205(1-3):51-59.
Click to display the text
[10] Zribi T, Khalfallah A,BelHadjSalah H.Experimental characterization and inverse constitutive parameters identification of tubular materials for tube hydroforming process[J].Materials and Design,2013,49:866-877.
Click to display the text
[11] Imaninejad M, Subhash G,Loukus A.Influence of end-conditions during tube hydroforming of aluminum extrusions[J].International Journal of Mechanical Sciences,2004,46(8):1195-1212.
Click to display the text
[12] Imaninejad M, Subhash G,Loukus A.Experimental and numerical investigation of free-bulge formation during hydroforming of aluminum extrusions[J].Journal of Materials Processing Technology,2004,147(2):247-254.
Click to display the text
[13] Boudeau N, Malecot P.A simplified analytical model for post-processing experimental results from tube bulging test:theory,experimentations,simulations[J].International Journal of Mechanical Sciences,2012,65(1):1-11.
Click to display the text
[14] Varma N S P, Narasimhan R.A numerical study of the effect of loading conditions on tubular hydroforming[J].Journal of Materials Processing Technology,2008,196(1-3):174-183.
Click to display the text
[15] Liu B S, Lang L H,Zeng Y S,et al.Forming characteristic of sheet hydroforming under the influence of through-thickness normal stress[J].Journal of Materials Processing Technology,2012,212(9):1875-1884.
Click to display the text
[16] Strano M, Altan T.An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications[J].Journal of Materials Processing Technology,2004,146(1): 92-96.
Click to display the text
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0603
北京航空航天大学主办。
0

文章信息

程鹏志, 郎利辉, 葛宇龙, 阮尚文, 王韬, 武海
CHENG Pengzhi, LANG Lihui, GE Yulong, RUAN Shangwen, WANG Tao, WU Hai
力约束管材自由胀形试验研究与材料性能测试
Tube free bulging experiment with force-end and material properties testing
北京航空航天大学学报, 2015, 41(4): 686-692
Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(4): 686-692.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0603

文章历史

收稿日期:2014-09-28
录用日期:2014-11-19
网络出版时间:2014-12-22

相关文章

工作空间