﻿ 管道喷涂机器人:结构与位姿调整
 文章快速检索 高级检索

1. 北京航空航天大学 机械工程及自动化学院, 北京 100191;
2. 合肥工业大学 机械学院, 合肥 230051

Pipeline spraying robot: structure and pose adjustment
CHEN Youdong1 , JI Xudong1, TANG Wei2
1. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. School of Mechanical, Hefei University of Technology, Hefei 230051, China
Abstract:To meet the demand of large allotype pipelines inner wall spraying, a pipeline spraying robot with series and parallel structure was designed, which consisted of a support platform and a series manipulator. The support platform was modeled by geometric method. The manipulator was analyzed by D-H method. Based on the robot model, inverse equations were obtained. After the robot was positioned initially, the robot and pipeline poses were measured by laser tracker. The adjustments were calculated by the inverse equations. According to the adjustments, the robot was adjusted so that the axis of the pipeline coincided with the axis of the spray gun. Through the implemented by the manufacturing plant, the effectiveness of the pipeline spray robot and the method of the pose adjustment were confirmed, and the results show that the robot can improve the efficiency and the quality of spray.
Key words: allotype pipelines     spray     robot     pose adjustment     series and parallel structure

1 喷涂机器人 1.1 异型管道

1.2 机器人结构

 图 1 喷涂机器人Fig. 1 Spraying robot

 图 2 喷枪装置Fig. 2 Spray gun device

 图 3 喷涂机器人运动简图Fig. 3 Kinematic sketch of spraying robot

1.3 机器人建模

 图 4 支撑平台坐标系Fig. 4 Coordinate system of support platform

 图 5 机械臂连杆坐标系Fig. 5 Coordinate system of connecting rod of mechanical arm

 i a(i-1) α(i-1) di θi 3 0 0 d3 θ3 4 0 -90 d4 -90 5 a4 -90 d5 0

O3X3Y3Z3为旋转机构坐标系,原点O3是旋转机构旋转中心线和横移机构移动轴的交点;O4X4Y4Z4为横移机构坐标系,初始状态下原点O4和坐标系O3X3Y3Z3原点重合;O5X5Y5Z5为喷枪装置坐标系,原点O5是喷枪旋转轴线和喷枪平面的交点;点OX4轴和Z5轴的交点.机械臂通过1个旋转关节和2个移动关节调整末端喷枪的位姿.图 5(b)中,按照D-H建模法标出相应的位置关系;在表 1中,d4,d5,θ3都是变量;d5初始值为S,SO到点O5的初始距离;d3a4都是机器人固有参数.

2 位姿求解

2.1 支撑平台

n 1,o 1,a 1,p 1是在坐标系O1X1Y1Z1中坐标系O2X2Y2Z2法线矢量、方向矢量、接近矢量、原点矢量.

4个支腿顶部在O1X1Y1Z1坐标系中的坐标为P1(x1,y1,z1+d2),P2(x2,y2,z2+d2),P3(x3,y3,z3+d2),P4(x4,y4,z4+d2),其中z1,z2,z3,z4为支腿伸长量,d2为支腿初始长度,如图 3所示.

x1,y1,x2,y2,x3,y3,x4,y4均为已知.有如下关系:

2.2 机 械 臂

3 位姿调整

 图 6 调姿流程图Fig. 6 Flow chart of adjusting position

1) 计算支腿坐标系相对于世界坐标系的位姿矩阵0 T 1.

O5Y5Z5平面上选取3点,这3点位于悬臂上,如图 7所示,Pb1Pb2Y5轴上的两点,Pb1Pb3Z5轴平行,用激光跟踪仪标定这3个点在坐标系O0X0Y0Z0中的坐标(选取激光跟踪仪测量坐标系为世界坐标系).

 图 7 悬臂测试点Fig. 7 Test points of cantilever

2) 测量管道前端面中心位姿0 T t.

 图 8 管道前端面中心坐标系Fig. 8 Coordinate system of the front face center of pipe

Pa在坐标系O0X0Y0Z0中坐标为

3) 计算关节变量调整值.

z1,z2,z3,z4的值调节相应支腿的高度使喷枪的旋转轴与管道轴同平面,即和支撑平台平面平行.由θ3的值调节旋转盘使喷枪旋转轴与管道轴线平行.由d4的值调节横移平台使喷枪轴与管道轴重合.

4 试 验

 图 9 计算结果示例Fig. 9 Sample of the results

 图 10 调姿后的喷涂机器人Fig. 10 Spraying robot after adjusting position

5 结 论

1) 本文针对大型异型管道喷涂的需求,设计了一种串并联的管道喷涂机器人;采用几何和D-H建模相结合的方法对机器人进行建模.研制的机器人在工厂进行了测试,测试结果表明喷涂机器人结构合理.

2) 给出了位姿调整算法.位姿调整算法在研制的机器人上进行应用,缩短了调整时间,提高了工作效率.

 [1] 陈雁,邵君奕, 张传清,等.复杂管道喷涂系统研制[J].机械设计与制造,2009(11):1-3. Chen Y,Shao J Y,Zhang C Q,et al.Development of spraying system for complex duct[J].Mechanical Design and Manufacturing,2009(11):1-3(in Chinese). Cited By in Cnki (1) | Click to display the text [2] 曾勇. 大型复杂自由曲面的喷涂机器人喷枪轨迹优化研究[D].兰州:兰州理工大学,2011. Zeng Y.The research of the spray gun's trajectory optimization of spraying robot which sprays large complex free surface[D].Lanzhou:Lanzhou University of Technology,2011(in Chinese). Cited By in Cnki (1) [3] Cho C S, Kim J D,Lee S G,et al.A study on automated mobile painting robot with permanent magnet wheels for outer plate of ship[J].Robotics(ISR),2013,44:1-4. Click to display the text [4] 王站中,张大卫, 安艳松,等.非球形手腕6R串联型喷涂机器人逆运动学分析[J].天津大学学报,2007,40(6):665-670. Wang Z Z,Zhang D W,An Y S,et al.Inverse kinematics analysis of the 6R serial spraying manipulator with non-spherical wrist[J].Journal of Tianjin Univerity,2007,40(6):665-670(in Chinese). Cited By in Cnki (17) | Click to display the text [5] 李抗战,李培哲. FANUC机器人喷涂系统在重卡驾驶室上的应用[C]//第十四届全国涂料涂装技术信息交流会暨交通用涂料涂装技术研讨会,2011,5:105-124. Li K Z,Li P Z.The application of FANUC robotics spraying system in heavy card bridge[C]//The 14th National Paint Coating Technical Information Exchange and Traffic with Paint Coating Technology Seminar,2011,5:105-124(in Chinese). Cited By in Cnki [6] 张微微. 6-DOF串联机器人动力学性能指标分析与仿真[D].秦皇岛:燕山大学,2007. Zhang W W.6-DOF serial robot dynamics performance index analysis and simulation[D].Qinhuangdao:Yanshan University,2007(in Chinese). Cited By in Cnki (8) [7] Alessandro G,Renato V, Daniele P,et al.Automatic path and trajectory planning for robotic spray painting[J].Robotics,2012:1-6. Click to display the text [8] Okamoto J, Adamowski J C,Tsuzuki M S G,et al.Autonomous system for oil pipelines inspection[J].Meehatronics,1999,9(7): 731-743. Click to display the text [9] 刘晓洪,郑毅, 高隽恺,等.新型蠕动式气动微型管道机器人[J].液压气动与密封,2007(1):16-18. Liu X H,Zheng Y,Gao J K,et al.New type of creeping type pneumatic micro in-pipe robot[J].Hydraulics Pneumatics & Seals,2007(1):16-18(in Chinese). Cited By in Cnki (11) [10] Chen Y, Shao J Y,Zhang C Q,et al.Redundant-robot-based painting system for variable cross-section S-shape pipe[J].Reconfigurable Mechanisms and Robots,2009:743-749. Click to display the text [11] Liu T, Zhang B,Jia J X.Electromagnetic navigation system design of the green house spraying robot[J].Mechanic Automation and Control Engineering(MACE),2011:2140-2144. Click to display the text [12] 栾振兴. 一种S型管道喷涂机器人的结构设计与分析[D].北京:北京邮电大学,2010. Luan Z X.The design and analysis of an s-shaped pipe spraying robot structure[D].Beijing:Beijing University of Posts and Telecommunications,2010(in Chinese). Cited By in Cnki [13] 马青华,付大海. 船舶热力管道的腐蚀与防护[J].现代涂料与涂装,2004(1):10-12. Ma Q H,Fu D H.Corrosion and protection of heat distribution pipelines of ships[J].Modern Paint and Finishing,2004(1):10-12(in Chinese). Cited By in Cnki (1) [14] 郑克敏,朱金荣, 沈良,等.椭圆异型管的研制和开发[J].上海煤气,2000(4):1-10. Zheng K M,Zhu J R,Shen L,et al.The research and development of elliptic section tube[J].Shanghai Gas,2000(4):1-10(in Chinese). Cited By in Cnki [15] 郭永鑫,杨开林, 郭新蕾,等.大型管道输水系统充水过程滞留气泡对输水能力的影响[J].水利学报,2013,3(3):262-267. Guo Y X,Yang K L,Guo X L,et al.Effect analysis of the detained air pockets to the conveyance capacity in large-scale pipelines[J].Journal of Hydraulic Engineering,2013,3(3):262-267(in Chinese). Cited By in Cnki [16] Luo Z S, Wang X W,Yang H.Analytic study based on failure effects model of adjacent oil pipeline[J].Management Science and Engineering,2009:271-276. Click to display the text [17] 陈雁,邵君奕, 张传清,等.复杂管道喷涂系统研制[J].机械设计制造,2009,11(11):1-3. Chen Y,Shao J Y,Zhang C Q,et al.Development of spraying system for complex duct[J].Machinery Design & Manufacture,2009,11(11):1-3(in Chinese). Cited By in Cnki (1) | Click to display the text [18] Bennett T, Kakuda T,Kulkarni A,et al.Front surface thermal property measurements of air plasma spray coatings[J].Journal of Applied Physics,2009:105(8):083501. Click to display the text [19] 安永植,安永辰. 机器人位姿误差校正方法[J].哈尔滨工业大学学报,1993,25(1):77-82. An Y Z,An Y C.The method of robot pose error correction[J].Journal of Harbin Institute of Technology University,1993,25(1): 77-82(in Chinese). Cited By in Cnki [20] He C,Olds K, Iordachita I,et al.A new ENT microsurgery robot:error analysis and implementation[C]//Proceedings-IEEE International Conference on Robotics and Automation,2013:1221-1227. Click to display the text

#### 文章信息

CHEN Youdong, JI Xudong, TANG Wei

Pipeline spraying robot: structure and pose adjustment

Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(2): 209-215.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0163