﻿ 一种变体飞行器的动力学建模与动态特性分析
 文章快速检索 高级检索

Dynamic modeling for a morphing aircraft and dynamic characteristics analysis
ZHANG Jie, WU Sentang
School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:The physical model of a variable-span variable-sweep morphing aircraft was simplified. Based on Kane's method, the morphing movements were assumed to be controllable known input, and the wings' movements were expressed by constraint equations. The six components of the translational velocity and the angular velocity of the morphing aircraft's body in the body coordinate frame were selected as the generalized speeds. Six degree-of-freedom dynamic model was built. Additional forces and additional moments were defined to describe the dynamic influence imposed on the morphing aircraft by the morphing movement. The simulation results show that, in the condition of steady-state flight, the additional forces and moments cased by the wings' morphing are small compared to the variations of aerodynamic forces. The aircraft's longitudinal dynamic responses during the morphing process are simulated and analyzed at different morphing speeds. Results show that the aircraft's height, velocity and pitch angle will change considerably during morphing process.
Key words: morphing aircraft     dynamic model     modeling     variable-span     variable-sweep     Kane's method

1 Kane方法

uk确定后,系统中任意刚体相对于惯性参考系的质心速度vci以及转动角速度ωi均可唯一地表示为广义速率的线性组合:

2 物理模型

 图 1 飞行器简化模型Fig. 1 Morphing aircraft’s simplified model

3 变体飞行器动力学建模 3.1 广义坐标与广义速率

3.2 广义主动力与广义惯性力

3.3 构造Kane方程

4 变体过程动态特性仿真分析 4.1 仿真平台及参数

 参数 设置值 参数 设置值 mt/kg 907 a/m 0.355 Ma 0.5 b/m 0.15 l/m 6.985 l1/m 2.5 R/m 0.355 l2/m 2

 图 2 4种气动布局Fig. 2 Four aerodynamic configurations

4.2 变形运动产生的附加动力学影响分析

1) 假设机翼左右对称变形.

 图 3 对称一阶变形附加力Fig. 3 Additional force under symmetric first-order morphing

2) 假设只有右侧机翼变形.

 图 4 单侧翼变形附加力及附加力矩Fig. 4 Additional forces and moment under asymmetric morphing

4.3 变体引起的飞行器纵向运动响应分析

 图 5 变体过程动态响应Fig. 5 Dynamic responses during morphing

5 结 论

1) 简化了可变展长、可变后掠角变体飞行器的物理模型,利用Kane方法建立了该种飞行器的动力学模型,可作为变体飞行器飞行控制系统设计与研究的基础.

2) 机翼对称变形只会在xb轴方向产生附加动力学影响;非对称变形还会对yb轴方向以及偏航力矩产生附加影响;但以上附加影响相对于空气动力的变化来说较小,后者对变体过程的动力学影响是最主要的,该结果可用于动力学模型的简化.

3) 对变体引起的飞行器纵向运动响应的仿真表明:飞行器的高度、速度以及俯仰角均发生很大变化;变形速度越大,飞行器状态的变化越快,其变化量也越大.

 [1] Reich G,Sanders B.Introduction to morphing aircraft research[J].Journal of Aircraft,2007,44(4):1059. Click to display the text [2] Barbarino S,Bilgen O,Ajaj R M,et al.A review of morphing aircraft[J].Journal of Intelligent Material Systems and Structures,2011,22(9):823-877. Click to display the text [3] Weisshaar T A.Morphing aircraft technology-new shapes for aircraft design,RTO-MP-AVT-141[R].France:DTIC Document, 2006. Click to display the text [4] Bonnema K,Smith S.AFTI/F-111 mission adaptive wing flight research program[C]//4th Flight Test Conference.USA:AIAA,1988:155-161. [5] Pendleton E W,Bessette D,Field P B,et al.Active aeroelastic wing flight research program:technical program and model analytical development[J].Journal of Aircraft,2000,37(4):554-561. Click to display the text [6] Kudva J N.Overview of the DARPA smart wing project[J].Journal of Intelligent Material Systems and Structures,2004,15(4):261-267. Click to display the text [7] Yue T,Wang L X,Ai J Q.Gain self-scheduled H∞ control for morphing aircraft in the wing transition process based on an LPV model [J].Chinese Journal of Aeronautics,2013,26(4):909-917. Click to display the text [8] He Z,Lu Y P.Decentralized robust control design for spatially interconnected systems with uncertainties[J].International Journal of Innovative Computing,Information and Control,2010,6(4):1763-1771. [9] 董二宝.智能变形飞行器结构实现机制与若干关键技术研究[D].合肥:中国科学技术大学,2010.Dong E B.Research on realization mechanism and some key technologies of smart morphing aircraft structures[D].Hefei:University of Science and Technology of China,2010(in Chinese). Cited By in Cnki (16) [10] 陈钱,白鹏,李锋.飞行器变后掠过程非定常气动特性形成机理[J].力学学报,2013,45(3):307-313.Chen Q,Bai P,Li F.Study on the formatioin mechanisms of unsteady aerodynamic characteristics of morphing flight vehicle in sweep-varying process[J].Chinese Journal of Theoretical and Applied Mechanics,2013,45(3):307-313(in Chinese). Cited By in Cnki [11] Obradovic B,Subbarao K.Modeling of flight dynamics of morphing-wing aircraft[J].Journal of Aircraft,2011,48(2):391-402. Click to display the text [12] Seigler T M,Neal D A,Bae J S,et al.Modeling and flight control of large-scale morphing aircraft[J].Journal of Aircraft,2007,44(4):1077-1087. Click to display the text [13] Henry J J.A mathematical model for roll dynamics by use of a morphing-span wing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston:AIAA,2007:76-91. [14] 刘延柱.高等动力学[M].北京:高等教育出版社,2001.Liu Y Z.Advanced dynamics[M].Beijing:Advanced Education Press,2001(in Chinese). [15] Shiv J,Zeb T,William C,et al.Comparison of morphing wing stategies based upon aircraft performance impacts[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference.USA:AIAA,2004:1-7. Click to display the text [16] Bowman J,Sanders B,Weisshaar T.Evaluating the impact of morphing technologies on aircraft performance[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.USA:AIAA,2002:1-114 Click to display the text

#### 文章信息

ZHANG Jie, WU Sentang

Dynamic modeling for a morphing aircraft and dynamic characteristics analysis

Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(1): 58-64.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0048