﻿ 阀控电液位置伺服系统非线性鲁棒控制方法
 文章快速检索 高级检索

1. 北京航空航天大学 飞行器控制一体化技术重点实验室, 北京 100191;
2. 太原理工大学 机械电子研究所, 太原 030024

Nonlinear robust control of valve controlled electro-hydraulic position servo system
Wang Chengwen1,2, Shang Yaoxing1, Jiao Zongxia1, Han Songshan1
1. Science and Technology on Aircraft Control Laboratory, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. Institute of Machinery and Electronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:To deal with the problem of flow nonlinearity and parametric uncertainties of valve controlled hydraulic position servo system, a nonlinear robust controller was developed based on the Back-Stepping design method. The mathematic model of the valve controlled system was developed, and the nonlinear robust algorithm was derived based on the developed model. The position tracking problem was converted into the load flow planning problem, and the controller was achieved just through one step. The developed controller took the flow nonlinearity and system parametric uncertainties into consideration. The stability of the developed algorithm was proved theoretically. Experimental results show the tracking performance based on the developed controller could be improved compared with that of traditional proportional-integral-derivative (PID) controller.
Key words: nonlinear control     electro-hydraulic servo system     parametric uncertainties     flow nonlinearity     robust control

1 系统模型

 图 1 阀控马达系统示意图Fig. 1 Schematic diagram of valve controlled motor system

2 非线性鲁棒控制器设计 2.1 控制器设计

QL看作输入控制量,为了保证式(12)是半负定,设期望的负载流量由如下2部分组成:

2.2 稳定性证明

3 试 验 3.1 试验系统

 图 2 试验台照片Fig. 2 Photo of the test rig

 元件 型号 品牌 恒压变量泵 A4VSO40DR/10PR25NO REXROTH AC电机 30 kW,280 V,4poles,B35 ABB 溢流阀 DBW10B1-5X/315-6EG24N4 REXROTH 液压马达 115 cm/rad,range:±45° Self-development 伺服阀 D765-1633-5,38 L/min MOOG 角度码盘 ECN413 HEIDENHAIN 力矩传感器 strain gauge(HBM) Institute 701 压力传感器 US175-c00002-20086 MEAS 工控机 IEI Ws-855GS ADVANTECH A/D板卡 PCI-1716,250 ks/s ADVANTECH D/A板卡 PCI-1723,16 bit DAC ADVANTECH
3.2 试验结果

1) 角度指令为5°,1 Hz时的对比试验数据如图 3所示.由图可见,基于PID控制方法的控制误差为0.28°,而基于非线性鲁棒算法的踪误差为0.01°.

 图 3 对比试验1：作动器跟踪正弦指令5°,1 HzFig. 3 Comparative experiment 1：actuator tracks sine reference is 5°,1 Hz

2) 角度指令为5°，3 Hz时的对比试验数据如图 4所示,基于PID的控制误差为0.72°,而基于非线性鲁棒算法的踪误差只有0.03°.

 图 4 对比试验2:作动器跟踪正弦指令5°,3 HzFig. 4 Comparative experiment 2:actuator tracks sine reference is 5°,3 Hz

3) 角度指令为5°,7 Hz时的对比试验数据如图 5所示,此时基于PID的控制误差为1.75°,而基于非线性鲁棒算法的踪误差只有0.17°.

 图 5 对比试验3:作动器跟踪正弦指令5°,7 HzFig. 5 Comparative experiment 3:actuator tracks sine reference is 5°,7 Hz

 图 6 3组试验跟踪误差对比Fig. 6 Tracking errors comparison of the three experiments

4 结 论

1) 制约阀控电液伺服系统跟踪性能的因素主要有两个方面:一是由于小孔节流引起的流量非线性问题;二是由于系统自身具有的参数不确定性问题.

2) 电液伺服系统的跟踪问题可以转换为系统负载流量的规划问题.本文基于Back-Stepping的设计思想,为阀控电液位置伺服系统设计了一种非线性鲁棒控制器.该控制器综合考虑了系统的流量非线性以及参数不确定性问题.和传统的基于三阶模型得到的控制算法相比,该算法具有结构简单、易于工程应用的特点.

3) 通过对控制器的分析可以看出,电液伺服系统的负载压力及其导数、指令信号微分可用于改善伺服系统的跟踪性能.

 [1] Yao B,Bu F P,Reedy J,et al.Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments[J].IEEE-ASME Transactions on Mechatronics,2000,5(1):79-91 Click to display the text [2] Yao B,Chiu G T C,Reedy J T.Nonlinear adaptive robust control of one-DOF electro-hydraulic servo systems[C]//ASME International Mechanical Engineering Congress and Exposition(IMECE'97),FPST.Los Alamitos,CA:IEEE Comp Soc,1997,4:191-197 [3] Wang C W,Jiao Z X,Wu S,et al.“Dual-loop control”of load simulator[C]//IEEE International Conference on Industrial Informatics(INDIN).Piscataway,NJ:IEEE,2012:530-535 Click to display the text [4] Wang C W,Jiao Z X,Wu S,et al.Nonlinear adaptive control of electro-hydraulic load simulator with active motion disturbance[J].Mechatronics,2014,24(1):32-40 Click to display the text [5] 汪成文,焦宗夏,罗才瑾.基于改进的速度同步控制的电液负载模拟器[J].航空学报,2012,33(9):1717-1725 Wang Chengwen,Jiao Zongxia,Luo Caijin.An improvement velocity synchronization control on electro-hydraulic load simulator[J].Acta Aeronautica et Astronautica Sinica,2012,33(9):1717-1725(in Chinese) Cited By in Cnki (6) | Click to display the text [6] Wang C W,Jiao Z X,Wu S,et al.An experimental study of the dual-loop control of electro-hydraulic load simulator[J].Chinese Journal of Aeronautics,2013,26(6):1586-1595 Click to display the text [7] Plummer A R.Robust electrohydraulic force control[J].Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering,2007,221(1):717-731 Click to display the text [8] Zhao T N,Virvalo T.Fuzzy control of a hydraulic position servo with unknown load[C]//Second IEEE International Conference on Fuzzy Systems.Piscataway,NJ:IEEE,1993:785-788 Click to display the text [9] Mihajlov M,Nikoli ć V,Anti ć D.Position control of an electro-hydraulic servo system using sliding mode control enhanced by fuzzy PI controller[J].Facta Universitatis Series:Mechanical Engineering,2002,1(1):1217-1230 Click to display the text [10] Miller W T,Hewes R P,Glanz F H,et al.Real-time dynamic control of an industrial manipulator using a neural network-based learning controller[J].Robotics and Automation,IEEE Transactions on,1990,6(2):1-9 Click to display the text [11] Zhong W F,He X X.Fuzzy neural network control of electro-hydraulic position servo system[J].Electric Machines and Control,2008,4(2):18-24 Click to display the text [12] Karpenko M,Sepehri N.On quantitative feedback design for robust position control of hydraulic actuators[J].Control Engineering Practice,2010,18(3):289-299 Click to display the text [13] Ahn K,Lee B,Yang S.Design and experimental evaluation of a robust force controller for a six-link electro-hydraulic manipulator via H∞ control theory[J].KSME International Journal,2003,17(3):999-1010 [14] Yao B.Adaptive robust control of nonlinear systems with application to control of mechanical systems[D].California:University of California,1996 Click to display the text [15] Merritt H E,Hydraulic control systems[M].New York:John Wiley & Sons Inc,1967:134-146

#### 文章信息

Wang Chengwen, Shang Yaoxing, Jiao Zongxia, Han Songshan

Nonlinear robust control of valve controlled electro-hydraulic position servo system

Journal of Beijing University of Aeronautics and Astronsutics, 2014, 40(12): 1736-1740.
http://dx.doi.org/10.13700/j.bh.1001-5965.2013.0752