文章快速检索 高级检索

1. 北京航空航天大学 航空科学与工程学院, 北京 100191;
2. 哈尔滨飞机工业集团有限责任公司, 哈尔滨 150066

Progressive failure analysis and crashworthiness experiment for composite structural discreteness
Luo Haibo1, Yan Ying1, Meng Xiangji1, Liang Zudian1, Hou Kang1, Gong Shaobo2
1. School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. Corporation of Harbin Aircraft Industry Group, Harbin 150066, China
Abstract:The experimental crashworthiness research on energy-absorbing discrete structures of composite was carried out. The corresponding energy absorption load-displacement curves, the average load, the peak load and the total energy-absorbing parameters were all obtained. Considering the anisotropic constitutive relation of composites, the secondary development of the finite element software was applied. Considering the Hashin failure criterion with the stiffness degradation theory included, the progressive failure numerical analysis was discussed for the structural discreteness. Based on the extended failure criterion, a gradually weakness of layup triggers links style was set up respectively, also the average load of energy-absorbing evaluation parameter was obtained by numerical simulation, which is 361.10 kN. Compared with the experimental results, the relative error is less than 7%, and the numerical simulation results agree well with those of the experiments, which indicate the feasibility and effectiveness of this method to estimate the crashworthiness of composite structural discreteness.
Key words: composite discreteness structure     failure criterion     progressive failure     average load     numerical analysis

 图 1 结构组件几何构型 Fig. 1 Geometry configuration of structural discreteness

 材料 参数 数值 G803/5224 E1, E2/GPa 71.6 E3/GPa 60 G12, G13/GPa 4.06 G23/GPa 4.06 ν12 0.056 XT/MPa 573 XC/MPa 693 YT/MPa 573 YC/MPa 693 S/MPa 94.1 G827/5224 E1/GPa 136 E2, E3/GPa 8.9 G12, G13/GPa 4.9 G23/GPa 4.9 ν12 0.35 XT/MPa 1 300 XC/MPa 1 180 YT/MPa 21 YC/MPa 109 S/MPa 104 注：E—弹性模量；G—剪切模量；ν—泊松比；下标1,2和3—坐标系的3个方向；XT和XC—x方向的拉伸和压缩强度；YT和YC—y方向的拉伸和压缩强度；S—剪切强度.

 图 2 冲击试验安装示意图 Fig. 2 Installation diagram of impact test
1.2 试验及结果

 图 3 冲击试验破坏形貌 Fig. 3 Damage morphology of impact test
2 数值模拟及分析 2.1 有限元模型

 图 4 结构组件有限元模型 Fig. 4 Finite element model of structural discreteness

 图 5 结构组件薄弱环节设置 Fig. 5 Layup weaknesses of structural discreteness

 图 6 损伤演化应力-应变曲线 Fig. 6 Curves of stress vs strain for damage evolution

 图 7 位移-时间曲线模拟与试验结果对比 Fig. 7 Comparison between simulation results and experiment results:curves of displacement vs time

 图 8 速度-时间曲线模拟与试验结果对比 Fig. 8 Comparison between simulation results and experiment results:curves of velocity vs time

 图 9 力-位移曲线模拟与试验结果对比 Fig. 9 Comparison between simulation results and experiment results:curves of force vs displacement

 图 10 失效破坏形貌模拟结果 Fig. 10 Simulation results of failure damage morphology

 参数 平均载荷/kN 峰值载荷/kN 总吸能值/kJ 计算 361.10 630.45 31.36 试验 386.96 612.44 30.92 误差/% -6.68 2.94 2.30
3 结 论

1) 对瞬态动力学有限元软件进行了二次开发,考虑复合材料的各向异性本构关系,采用含刚度退化的Hashin失效准则,得到了冲击过程中相关的平均载荷、峰值载荷和最终吸能值等重要吸能参数.

2) 对于冲击吸能过程中重点关注的平均载荷,其相对误差为6.68%,与试验结果吻合很好,其他吸能参数误差均较小,总的来说相对误差最大不超过7%,满足工程应用精度要求.

3) 通过设置渐进削弱式的薄弱环节能够降低压溃过程中的峰值载荷,增大平均载荷,采用本文方法模拟复合材料结构组件吸能能力是有效可行的.

 [1] 倪先平,王永亮,荚淑萍,等.直升机机身下部复合材料典型结构耐坠特性研究[J].复合材料学报,2003,20(4):51-57 Ni Xianping,Wang Yongliang,Jia Shuping,et al.Analysis of crash impact behavior of typical composite components of helicopter bottom structure[J].Acta Materiae Compositae Sinica,2003,20(4):51-57(in Chinese) Cited By in Cnki (16) [2] Farley G L.Effect of fiber and matrix maximum strain on the energy absorption of composite materials[J].Journal of Composite Materials,1986,20(4):322-334 Click to display the text [3] Farley G L,Jones R M.Analogy for the effect of material and geometrical variables on energy-absorption capability of composite tubes[J].Journal of Composite Materials,1992,26(1):78-89 Click to display the text [4] Thornton P H,Jeryan R A.Crash energy management in compos- ite automotive structures[J].International Journal of Impact Engineering,1988,7(2):167-180 Click to display the text [5] Okano M,Sugimoto K,Saito H,et al.Effect of the braiding angle on the energy absorption properties of a hybrid braided FRP tube[J].Proceedings of the Institution of Mechanical Engineers,Part L:Journal of Materials Design and Applications,2005,219(1):59-66 Click to display the text [6] Kindervater C M.Energy absorption of composites as an aspect of aircraft structural crash resistance[C]//European Conference on Composite Materials.Stuttgart:[s.n.],1990:643 Click to display the text [7] Sokolinsky V S,Indermuehle K C,Hurtado J A.Numerical simulation of the crushing process of a corrugated composite plate[J].Composites:Part A,2011,42(9):1119-1126 Click to display the text [8] Jiménez M A,Miravete A,Larrodé E,et al.Effect of trigger geometry on energy absorption in composite profiles[J].Composite Structures,2000,48(1):107-111 Click to display the text [9] 龚俊杰,王鑫伟,王新峰.可控薄弱环节复合材料圆柱壳的耐撞性研究[J].应用力学学报,2010,27(2):243-249 Gong Junjie,Wang Xinwei,Wang Xinfeng.Crashworthiness research of controllable weaknesses for composite cylindrical shells[J].Chinese Journal of Applied Mechanics,2010,27(2):243-249(in Chinese) Cited By in Cnki (2) [10] Hanagud S,Craig J I,Sriram P,et al.Energy absorption behavior of graphite epoxy composite sine webs[J].Journal of Composite Materials,1989,23(5):448-459 Click to display the text [11] 龚俊杰,王鑫伟.复合材料波纹梁盒段耐撞性的数值模拟[J].应用力学学报,2007,24(1):165-168 Gong Junjie,Wang Xinwei.Numerical simulation to crashworthiness of composite corrugated board boxes[J].Chinese Journal of Applied Mechanics,2007,24(1):165-168(in Chinese) Cited By in Cnki (2) [12] Hashin Z.Failure criteria for unidirectional fiber composites[J].Journal of Applied Mechanics,Transactions ASME,1980,47(2):329-334 Click to display the text [13] Matzenmiller A,Lubliner J,Taylor R L.A constitutive model for anisotropic damage in fiber-composites[J].Mechanics of Materials,1995,20(2):125-152 Click to display the text [14] Lapczyk I,Hurtado J A.Progressive damage modeling in fiber-reinforced materials[J].Composites Part A:Applied Science and Manufacturing,2007,38(11):2333-2341 Click to display the text [15] Maimi P,Camanho P P,Mayugo J A,et al.A thermo dynamically consistent damage model for advanced composites[R].NASA/TM-2006-214282,2006

#### 文章信息

Luo Haibo, Yan Ying, Meng Xiangji, Liang Zudian, Hou Kang, Gong Shaobo

Progressive failure analysis and crashworthiness experiment for composite structural discreteness

Journal of Beijing University of Aeronautics and Astronsutics, 2014, 40(12): 1719-1724.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0008