﻿ 双级气体减压器稳定性影响因素数值分析
 文章快速检索 高级检索

1. 北京航空航天大学 宇航学院, 北京 100191;
2. 中国人民解放军93469部队, 石家庄 050071

Numerical analysis of influence factors on stability for dual-stage gas pressure reducing regulator
Sun Bing1, Xu Qi1, Chen Yang1 , Wei Lijun2
1. School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. No. 93469 Unit of PLA, Shijiazhuang 050071, China
Abstract:A numerical model of a dual-stage gas pressure reducing regulator, which is used in an aircraft pressurization system, was established on the basis of finite volume transient model of single-stage gas pressure reducing regulator. A modularization simulation model was also set up for performance study of dual-stage pressure regulator. The influences of different structural parameters on the stability of the two regulators which have tiny structural differences were illustrated by a series of numerical simulation, and their results were compared and analyzed. According to practical needs, the sample variance of II-stage valve spool velocity was chosen as the stability index, numerical analysis was then conducted on the influence factors including the II-stage valve spool mass, the II-stage low-pressure cavity volume, the II-stage feedback cavity volume, and the II-stage diaphragm stiffness. Results show that designers can decrease the II-stage valve spool mass or increase the II-stage diaphragm stiffness to improve the stability of the regulator. The study can help designers to meet the engineering requirements with minimum expenditure.
Key words: dual-stage gas pressure reducing regulator     finite volume model     numerical simulation     stability index     sample variance

1 双级减压器结构和数学模型

 图 1 双级气体减压器结构示意图Fig. 1 Schematic diagram of dual-stage gas pressure reducing regulator structure

 ρ,E,p—气体密度、单位体积总能量、压强;u,A—各腔室边界处的气流速度和流道面积; V—各腔室体积;Av—各节流组件流通截面积. 图 2 双级气体减压器有限控制体积网格Fig. 2 Finite control volume grids of dual-stage gas pressure reducing regulator
2 减压器特性研究系统数值模型

 图 3 双级气体减压器特性研究系统数值模型Fig. 3 Numerical simulation model of the dual-stage gas pressure reducing regulator test system

 序号 相关参数 数值(A型/B型) 1 p0/MPa 35/40 2 p1/MPa 0.101325 3 p2/MPa 0.101325 4 patm/MPa 0.101325 5 T0/K 285.15 6 V0G/m3 0.012

 序号 名称 符号 数值(A型/B型) 1 一级阀座内径 dvI1/mm 13.94/3.0 2 一级反馈孔等效直径 dvI3/mm 8.0/2.83 3 一级阀芯质量 mVCI/g 33.621/6.5 4 一级阀芯锥体圆锥半角 αI/(°) 25/36 5 一级副弹簧刚度 CI2/(N/mm) 96/64.3 6 一级副弹簧预压缩量 xI2/mm 12.118/5.06402 7 一级弹性元件材料阻尼系数 λsI/s 4×10-4 8 一级阀芯节流处流量系数 CdI1 0.233/0.5 9 一级反馈孔节流处流量系数 CdI3 0.7 10 二级阀芯质量 mVCII/g 42.6/26.65 11 二级阀芯锥体圆锥半角 αII/(°) 75/38 12 一级膜片刚度 CmI/(N/mm) -/54 13 一级主弹簧刚度 CI1/(N/mm) -/15.4 14 一级阀芯最大限位开度 hmaxI/mm 0.5/0.64 15 二级阀座内径 dvII1/mm 12.0/6.0 16 二级反馈孔等效直径 dvII3/mm 3.0 17 二级反馈中芯座内径 dvII4/mm 12.0/14.0 18 二级膜片预压缩量 xII0/mm 0.15 19 二级主弹簧刚度 CII2/(N/mm) 57.945/24.7 20 二级主弹簧预压缩量 xII2/mm 8.9834/3.22597 21 二级弹性元件材料阻尼系数 λsII/s 4×10-4 22 二级阀芯节流处流量系数 CdII1 0.166/0.5 23 二级反馈孔节流处流量系数 CdII3 0.7 24 二级反馈中芯节流处流量系数 CdII4 0.7 25 二级副弹簧预压缩量 xII1/mm 6.0 26 二级膜片刚度 CmII/(N/mm) 80/26 27 二级主弹簧刚度 CII1/(N/mm) 8.767/4.2 28 二级阀芯最大限位开度 hmaxII/mm 0.55/0.5

 阀门 等效直径dvs/mm 流量系数Cdopen 动作(开启关闭)时序 时间tvs/s 阀芯相对开度τvs GV1 6 0.77863 0.00000 0.00000 1.40000 0.30000 1.41000 0.40000 1.46000 0.50000 1.51000 0.55000 1.52000 0.60000 1.56000 0.65000 1.60000 0.70000 1.61000 0.80000 1.62000 1.00000 GV2 12 局部损失系数0.05 0.00000 1.00000 GV3 1.88 0.91945 0.00000 1.00000
3 结构参数稳定性影响分析

 序号 变量符号 仿真范围 稳定性范围 参数减小时稳定性变化 参数增大时稳定性变化 1 mVCII 0.010~93.90mVCII ≤1.033mVCII ↑ ↓ 0.375~3.752mVCII ≤1.079mVCII ↑ ↓ 2 lII2 0.004~100lII2 0.941~6.310lII2 ↓ ↑ 0.087~1.742lII2 ≥0.542lII2 ↓ ↑ 3 lII3 0.083~583.91lII3 0.876~6.310lII3 ↓ ↑ 0.242~2.416lII3 ≥0.713lII3 ↓ ↑ 4 lII4 0.013~1309.76lII4 任取 ↓ ↓ 0.245~6.860lII4 任取 — — 5 dvII3 0.010~36.67dvII3 0.500~8.750dvII3 ↑ ↓↑ 0.167~2.667dvII3 0.722~1.956dvII3 ↑ ↓ 6 αII 0.133~1.2αII 0.400~1.053αII ↑ ↓ 0.132~2.368αII ≤0.864αII ↑ ↓ 7 dvII1 0.010~1.667dvII1 0.500~1.042dvII1 ↑ ↓ 0.333~1.833dvII1 ≤0.882dvII1 ↑ ↓ 8 CmII 0.013~62.5CmII 0.950~3.750CmII ↓ ↑ 0.385~3.846CmII ≥0.885CmII ↓ ↑ 9 dvII4 0.001~41.67dvII4 0.667~1.417dvII4 ↓ ↓ 0.428~3dvII4 0.428~2.429dvII4 ↓ ↑ 注:lII2，lII3，lII4—减压器二级低压腔、反馈腔、反馈中腔的体积等效长度;符号“↑”—该型减压器稳定性会随着相应结构参数数值的变化而变强;符号“↓”—该型减压器稳定性会随着相应结构参数数值的变化而变弱;符号“—”—该型减压器稳定性基本不受相应结构参数变化的影响.

 算例编号 mVCII/gII1 lII2/mmII2 lII3/mmII3 CmII/(N/mm)II4 0-0 42.600 127.56 5.9941 80.0 1 43.026 126.28 5.9342 79.2 2 43.452 125.01 5.8742 78.4 3 43.878 123.73 5.8143 77.6 4 44.304 122.46 5.7543 76.8 5 44.730 121.18 5.6944 76.0 6 45.156 119.91 5.6344 75.2 7 45.582 118.63 5.5745 74.4 8 46.008 117.36 5.5146 73.6 9 46.434 116.08 5.4546 72.8 10 46.860 114.80 5.3947 72.0 注:II1~4代表改变不同结构参数下的4组算例,各结构参数都单独变化,即只改变自身参数,其余参数仍采用标准算例0-0参数.

 图 4 结构参数稳定性指标计算结果Fig. 4 Structure parameter stability indexes
4 结 论

 [1] 张雪梅,张黎辉,金广明,等.减压器动态过程的数值仿真[J].航空动力学报,2004,19(4):541-545 Zhang Xuemei,Zhang Lihui,Jin Guangming,et al.Numerical simulation of the dynamic process for pressure regulator[J].Journal of Aerospace Power,2004,19(4):541-545(in Chinese) Cited By in Cnki (22) [2] 郑丽,李清廉,沈赤兵.大流量气体减压器响应特性的仿真研究[J].火箭推进,2008,34(2):18-23 Zheng Li,Li Qinglian,Shen Chibing.Analysis on responding characteristics of large flux pressure reducing valve[J].Journal of Rocket Propulsion,2008,34(2):18-23(in Chinese) Cited By in Cnki (8) [3] 赖林,李清廉,郑丽,等.大流量气体减压器振动问题研究[J].国防科技大学学报,2009,31(2):1-4 Lai Lin,Li Qinglian,Zheng Li,et al.Research of the vibration failure of the large flux PRV[J].Journal of National University of Defense Technology,2009,31(2):1-4(in Chinese) Cited By in Cnki (7) [4] 余中军,赵竞全.航空氧气减压器性能仿真分析[J].北京航空航天大学学报,2009,35(11):1379-1383 Yu Zhongjun,Zhao Jingquan.Simulation on pressure regulator characteristic[J].Journal of Beijing University of Aeronautics and Astronautics,2009,35(11):1379-1383(in Chinese) Cited By in Cnki (1) [5] 尤裕荣,曾维亮.逆向卸荷式气体减压阀的动态特性仿真[J].火箭推进,2006,32(3):24-30 You Yurong,Zeng Weiliang.Simulation on reverse balanced pneumatic pressure reducing valve dynamic characteristic[J].Journal of Rocket Propulsion,2006,32(3):24-30(in Chinese) Cited By in Cnki (20) [6] 陈晓琴.减压阀充填过程动态特性仿真[J].导弹与航天运载技术,2006(5):45-49 Chen Xiaoqin.Dynamic simulation of the pressure reducing valve in filling conditions[J].Missile and Space Vehicle,2006(5):45-49(in Chinese) Cited By in Cnki (33) [7] Zafer N,Luecke G R.Stability of gas pressure regulators[J].Applied Mathematical Modelling,2008(32):61-68 [8] Rami E G,Jean-Jacques B,Bruno D,et al.Modelling of a pressure regulator[J].International Journal of Pressure Vessels and Piping,2007(84):234-243 [9] 陈阳,高芳,张黎辉,等.减压器动态仿真的有限体积模型[J].推进技术,2006,27(1):9-14 Chen Yang,Gao Fang,Zhang Lihui,et al.Finite volume model for numerical simulation on dynamic process of pressure reducing regulator[J].Journal of Propulsion Technology,2006,27(1):9-14(in Chinese) Cited By in Cnki (16) [10] 张育林,刘昆,程谋森.液体火箭发动机动力学理论与应用[M].北京:科学出版社,2005 Zhang Yulin,Liu Kun,Cheng Mousen.Liquid rocket engine dynamic theory and application[M].Beijing:Science Press,2005(in Chinese) [11] 陈阳,高芳,张振鹏,等.气动薄膜调节阀控制系统工作过程的动态仿真[J].火箭推进,2006,32(6):28-34 Chen Yang,Gao Fang,Zhang Zhenpeng,et al.Dynamic simulation of working process for control system of a pneumatic diaphragm control valve[J].Journal of Rocket Propulsion,2006,32(6):28-34(in Chinese) Cited By in Cnki (14) [12] 陈阳,蔡国飙,张振鹏,等.双组元统一推进系统减压器稳定性仿真[J].北京航空航天大学学报,2010,36(10):1135-1139 Chen Yang,Cai Guobiao,Zhang Zhenpeng,et al.Numerical simulation on dynamic stability of pressure reducing regulator in integral bipropellant propulsion system[J].Journal of Beijing University of Aeronautics and Astronautics,2010,36(10):1135-1139(in Chinese) Cited By in Cnki (3) [13] 廖少英.液体火箭推进增压系统[M].北京:国防工业出版社,2007 Liao Shaoying.Liquid rocket propellant and pressurization feed system[M].Beijing:National Defense Industry Press,2007(in Chinese) [14] 李人宪.有限体积法基础[M].2版.北京:国防工业出版社,2008 Li Renxian.Finite volume method[M].2nd ed.Beijing:National Defense Industry Press,2008(in Chinese) [15] Chen Y,Cai G B,Wu Z.Modularization modeling and simulation of turbine test rig main test system[J].Applied Mathematical Modelling,2011,35(11):5382-5399 Click to display the text

#### 文章信息

Sun Bing, Xu Qi, Chen Yang, Wei Lijun

Numerical analysis of influence factors on stability for dual-stage gas pressure reducing regulator

Journal of Beijing University of Aeronautics and Astronsutics, 2014, 40(12): 1660-1665.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0012