﻿ 基于WPI的多操纵面飞机积分滑模容错控制
 文章快速检索 高级检索

Fault tolerant control of multi-effectors aircraft using integral sliding model with WPI
Wang Fawei, Dong Xinmin, Wang Xiaoping, Xue Jianping
Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China
Abstract:An integral sliding model using dynamic adjustment weighted pseudo inverse (WPI) was proposed to fault tolerant control for over-actuated aircraft actuator damaged, which had fault reconstruction error and time delay, position and rate limiting. The instruction restricts module was used to limit saturation control command and instantaneous disturbance. A control allocation scheme using dynamic adjustment WPI was designed to gradually reduce instruction saturation. The control allocation was reconstructed by failure estimate to compensate the aerodynamic loss, which reduced the effects of fault for system stability. An integral siding model control law was designed to ensure system stability with fault reconstruction error and time delay. The simulation results show good track performance, as well as the robust for time delay and tolerant ability for actuator damaged.
Key words: over-actuated aircraft     dynamic adjustment     control allocation     integral sliding model     fault tolerant control

1 动态自适应控制分配律设计

 —动态自适应权值矩阵;K*—真实故障损伤矩阵;K—FDD检测出故障损伤矩阵;r—系统参考输入信号;y—系统输出信号;v—滑模容错控制律输出的虚拟控制信号;E—控制分配律;uc—滑模容错控制律和控制分配律解算出的执行器控制信号;u—经过位置和速率饱和限制后控制输出;δ—舵面真实偏转量;d—干扰信号;Δ—故障重构不匹配度;τ—故障重构延迟时间. 图 1 基于控制分配的积分滑模控制结构图Fig. 1 Integral sliding model using control allocation

Φ为加权矩阵自适应部分,本文采用文献[12,13]的自适应Φ选择方法,即令

2 积分滑模控制律设计 2.1 含控制分配律的故障方程

2.2 积分滑模面

2.3 积分滑模控制律

1) 当(t)=0时,

2) 当s(t)≠0时,不妨假设

3 控制器增益设计

4 仿真验证

 图 2 鸭翼与左升降副翼40%效能损伤故障的闭环系统响应(9%重构误差,τ=2 s)Fig. 2 Canard and left elevon 40% loss of efficiency failure system response (9% diagnostic error,τ=2 s)
 图 3 舵面控制信号(指令限制前)和舵面效能偏转角响应Fig. 3 Actuator control command (before limit) and actuator efficiency deflection angle response
 图 4 积分滑模虚拟控制信号Fig. 4 Integral sliding model virtual control signal
 图 5 动态自适应权值向量Fig. 5 Dynamic adjustment weight vector

5 结 论

1) 动态自适应权值可消除指令饱和引起的系统不稳定,提高控制律鲁棒性;

2) 控制分配律补偿了舵面故障引起的气动力损失,使得滑模容错律不需要重构,降低了故障对系统的影响;

3) 当控制分配受FDD影响存在延迟时,积分滑模控制律可起到防止系统恶化作用,具有鲁棒性;

4) 即使故障重构存在9%的误差,导致控制分配律未完全地补偿气动力损失,积分滑模控制律仍能实现精确跟踪参考指令,具有容错能力.

 [1] Johannes T, Johansen T A.Adaptive control allocation[J].Automatica,2008,44(11):2754-2765 Click to display the text [2] Alwi H, Edwards C.Fault tolerant control of an octorotor using LPV based sliding mode control allocation[C]//2013 American Control Conference.Piscataway,NJ:IEEE,2013:6505-6510 [3] Wang M, Yang J Y,Qin G Z,et al.Adaptive fault-tolerant control with control allocation for flight systems with severe actuator failures and input saturation[C]//2013 American Control Conference.Piscataway,NJ:IEEE,2013:5134-5139 [4] Alwi H, Edwards C.Robust actuator fault reconstruction for LPV systems using sliding mode observers[C]//Proceedings of the IEEE Conference on Decision and Control.Piscataway,NJ:IEEE,2010:84-89 Click to display the text [5] Shin D, Moon G,Kim Y.Design of reconfigurable flight control system using adaptive sliding mode control:actuator fault[C]//Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering.London:Professional Engineering Publishing Ltd,2005,219(4):321-328 [6] Shtessel Y, Buffington J,Banda S.Tailless aircraft flight control using multiple time scale reconfigurable sliding modes[J].IEEE Transactions on Control Systems Technology,2002,10(2): 288296 Click to display the text [7] Alwi H, Edwards C.Fault tolerant control of a civil aircraft using a sliding mode based scheme[C]//Proceedings of the 44th IEEE Conference on Decision and Control,and the European Control Conference 2005.Piscataway,NJ:IEEE Computer Society,2005:1011-1016 Click to display the text [8] Alwi H, Edwards C.Fault detection and fault-tolerant control of a civil aircraft using a sliding mode based scheme[J].IEEE Transactions on Control Systems Technology,2008,16(3): 499510 [9] Alwi H, Edwards C.Sliding mode FTC with on-line control allocation[C]//Proceedings of the IEEE Conference on Decision and Control.Piscataway,NJ:IEEE,2006:5579-5584 [10] Alwi H, Edwards C,Stroosma O, et al.A simulator evaluation of a model reference sliding mode fault tolerant controller[C]//2009 IEEE International Conference on Control and Automation.Piscataway,NJ:IEEE Computer Society,2009: 878883 [11] Alwi H, Edwards C.Fault tolerant control using sliding modes with on-line control allocation[J].Automatica,2008,44(7):1859-1866 Click to display the text [12] Boškovic J D, Mehra R K.Control allocation in overactuated aircraft under position and rate[C]//Proceedings of the American Control Conference.Piscataway,NJ:IEEE,2002,1: 791796 [13] Boškovic J D, Ling B,Prasanth R,et al.Design of control allocation algorithms for overactuated aircraft under constraints using LMIs[C]//Proceedings of the IEEE Conference on Decision and Control,2002,2:1711-1716 Click to display the text [14] Cai Z, de Queiroz M S,Dawson D M.A sufficiently smooth projection operator[J].IEEE Transactions on Automatic Control,2006,51(1):135-139 Click to display the text [15] Härkegård O, Glad S T.Resolving actuator redundancy optimal control vs control allocation[J].Automatica,2005,41(1): 137144 Click to display the text [16] Forssell L, Nilsson U.Admire the aero-data model in a research environment version 4.0,model description[R].FOI-R-1624-SE,2005

#### 文章信息

Wang Fawei, Dong Xinmin, Wang Xiaoping, Xue Jianping

Fault tolerant control of multi-effectors aircraft using integral sliding model with WPI

JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2014, 40(10): 1378-1385.
http://dx.doi.org/10.13700/j.bh.1001-5965.2013.0623